

Engineering Report CP007

Cutblocks: B14, B15, W14, W16

Prepared By: George Knoll, RPF

Date: March 27, 2015

Digitally signed by George Knoll Date: 2015.03.27 14:18:15 -07'00'

K2 Forestry Services Ltd.

3578 Estevan Drive

Port Alberni, BC, V9Y 5G8

Tel. (250) 723-3322

Contents

Introduction	3
Safety Highlights	
Cutting Permit 007 Overview	7
B14 Engineering Rationale	7
B15 Engineering Rationale	8
W14 Engineering Rationale	g
W16 Engineering Rationale	10
Road Construction	11
Cruising	12
Appendices	13
Appendix 1: CP 007 Overview Map	13
Appendix 2: Harvest Map and Instructions	14
Appendix 3: Road Construction Map and Instructions	15
Appendix 4: Road Designs	16
Appendix 5: Site Plans and Site Plan maps	17
Appendix 6: Wet Weather Shutdown Guidelines	18
Appendix 7: Best Management Practices for a Community Watershed	19
Annendix 8: Cruise Reports	20

Introduction

K2 Forestry Services Ltd. was contracted to provide multiphase development for the Sproat FDU Area of the Alberni Valley Community Forest (AVCF) tenure. A reconnaissance was conducted in August 2014 to summarize all resource features and determine development opportunities for the area. The following Engineering Report summarizes the engineering specifics related to developing Cutting Permit 007 including Cutblocks B14, B15, W14, and W16. The report includes: a general description of the area, safety highlights, block description, engineering rationale and cruising summary. Related documents including the Harvest Instructions Map can be viewed in the Appendices. Table 1 and 2 below illustrate the general specifics of the area.

Table 1. CP 007 Overview

Attributes	Description
Tenure	K2D, Alberni Valley Community Forest Corporation
General Location and Access	Bookhout Creek
Mapsheet	92F025
Forest Region/ District	Coast/South Island
Timber Supply Area/ Block	Strathcona / B Kyuquot

Table 2. Block B14, B15, W14, W16 Breakdown

Block	Timbermark	Gross Ha	Harvest Area (Ha)	Clearcut	Partial Cut	WTRA	TLA	Road RoW (K2D/0R1)
B14	K2D/007	21.7	15.3	15.3	0	3.9	0.5	2.0
B15	K2D/007	9.3	7.6	7.6	0	1.2	0	0.5
W14	K2D/007	6.6	5.2	3.4	1.8	0.8	0	0.6
W16	K2D/007	20.2	15.8	15.8	0	2.5	0	1.9

Safety Highlights

Falling

CP-007 (B14, B15, W14, and W16) can be mechanically felled, but hand-falling may be required for areas identified as steep hoe-chuck on the Harvest Instructions Map. These areas exceed the safe working slope guidelines for ground-based mechanical harvesters and contain shallow soils over bedrock (unsafe for tracked machines)

There are several other falling hazards associated with CP007 which include:

Partial Cut retention areas. Trees targeted for removal are painted on three sides with blue painted dots. Trees will need to be directionally felled which may brush standing timber or cause canopy disturbance (broken branches) which creates overhead hazards.

Very minor sign of scattered Root Rot pockets are located within these blocks. Timber in these areas exhibit a thinning canopy with a snag component and fallen timber with intact root-balls laying on the forest floor. Unstable root systems, leaning trees and hung up branches all create an overhead hazard for crews working near these root rot centers.

Falling of Snags & Danger Trees

In accordance with the Cutting Permit Authority and Work Safe BC Regulations, all snags and danger trees that endanger workers within a distance of 50m outside the cutblock boundaries, or within one and a half tree lengths, (whichever is greater), are approved for these harvest instructions except for boundary adjacent ITLP property (Blk W14 FC 10 to FC 11). Snags along this edge cannot be felled without the consent of the adjacent land owner. All danger trees and snags outside the cutblock boundaries that are required to be felled must be recorded on a map and provided to AVCF once falling has been completed. AVCF will be notified immediately if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Felled snags and danger trees up to 50m outside of the falling boundary meeting utilization specifications will be recovered.

One falling exception applies to Wildlife Tree Retention Areas (WTRA) - Snags or danger trees can be felled within a WTRA for safety reasons although only the portion of the felled snag or danger tree that falls outside the WTRA can be recovered.

NOTE: a high voltage power line is located along Block W14 from FC 11 to FC 13. Falling within 1 and 1/2 tree lengths of this powerline must be conducted by a certified arborist and/or with machine assist with positive directional control.

Steep Grades

No road segments greater than 18% exist within the settings. There is a section of steep grade on the Weiner connector. Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to fit the traction conditions. Hauling will not be permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERIC step grade decent guidelines. The Ministry of Transportation guidelines are to be followed once hauling on the highway.

Rainfall Shutdown

CP-007 (all Blocks) are to follow the following guidelines during operations:

- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 36 mm in 24 hours. Onsite rain gauges should be used and monitored daily.
- Start-Up Criteria: Activities may start up when the total rainfall is equal to or less than 30 mm in 24 hours. Adequate recovery time should be given before harvesting operations commence after a shutdown.

Adjacent Tenure Holders

Island Timberland (ITLP) maintains tenure adjacent to cutblock W14 (see HI map for location). Access to Blocks B14, B15 and W16 is along Branch AS12, currently under permit to Western Forest Products ~ Port Alberni Forest Operation (WFP-PAFO). This road is utilized by WFP- PAFO and ITLP to access their tenures. Industrial road activity on Branch AS12 is infrequent but all tenure holders should be proactive in notifying adjacent neighbors of intended activity to ensure the safety of crews, contractors and members of the general public. Access to block W14 is from WC 1, currently under road permit to the Alberni Valley Community Forest.

Recreational Use

Several trail networks lie adjacent to the proposed harvest areas in CP-007 (refer to Harvest Instruction Maps). The hiking trails are active and appear well maintained. Evidence of all-terrain vehicles (ATV) use was noted along numerous old road grades in and adjacent to these blocks. Adequate signs are to be posted to inform the public user groups of active blasting, logging and hauling during operations. Branch

AS12 will need to be closed to the public during these activities. All harvesting and road operations are to maintain the integrity of the trail network where operationally feasible and ensure no danger trees, snags or debris are left on or surrounding the trails.

The AVCF Sproat Lake FDU is located in provincial hunting region 1-7. Local hunters frequent the area in the fall (Sept 10^{th} – Dec 10^{th}) and spring (April 1^{st} – June 15^{th}) during the hunting season in search for upland game birds, deer, wolf, cougar and bear. Ensure signs are posted at key locations prior to CP-007 development to notify hunters of forest activities in the area. In the fall, mushroom pickers were also observed utilizing adjacent road systems on AVCF's tenure to access suitable timber for mushroom harvesting.

Steep Slopes In Block

The settings are to be mechanically felled. Hand falling may be required for steeper slope areas that cannot be safely reached with the processor. Once felled the proposed harvest areas are to be hoechucked. Some areas of hoe-chuck may contain steeper slopes. These areas have been addressed on the harvest instructions map with a safety hazard alert (areas over 35% steep hoe-chuck). All ground-based operations must be conducted in compliance with the Occupational Health and Safety Regulations pertaining to slope limitations. The contractor is to satisfy themselves, by ground inspection that all identified ground-based logging areas are operable and can be harvested in a manner the will not compromise worker safety. Old grades and benches are to be utilized to reduce hazards.

Cutting Permit 007 Overview

Cutting Permit 007 (Blocks B14, B15, W14, and W16) is located approximately 18 km west of Port Alberni in the Sproat Lake Forest Development Unit of the Alberni Valley Community Forest Tenure. Access from Highway 4 is across from the West Bay Hotel. Alternate access is via the Island Timberlands High Level Road system (AS 12) from the Ash Mainline. Refer to Appendix 1 for Overview Map. Final block selection and layout targeted stands with merchantable volume and size and was based on utilizing ground based harvest systems and existing roads and trails as much as possible. Block boundaries were designed to meet visual quality objectives from Highway 4 and Sproat Lake while not restricting harvest opportunities as well as maintain water quality, biodiversity and recreation opportunities.

Table 3: Cutting Permit Area Attributes

Attributes	Block B14	Block B15	Block W14	Block W16
Stand Type Second Growth		Second Growth	Second Growth	Second Growth
General Species	Fd _{67%} Cw _{10%} Hw _{15%} Ba _{3%}	Fd _{79%} Cw _{15%} Hw _{2%} Ba _{3%}	Fd _{99%} Cw _{1%}	Fd _{81%} Cw _{4%} Dr _{15%}
Composition Dr _{5%}		Dr _{1%}		
BEC information	CWHxm 01 (03) CWHmm1 01	CWHmm1 01	CWHxm 01(03)	CWHxm 01 (03)
Forest Health	Minor occurrence of Phellinus root rot	Minor occurrence of Phellinus root rot	Minor occurrence of Phellinus root rot	Minor occurrence of Phellinus root rot
Windthrow Risk	Low to Moderate Risk	Low to Moderate Risk	Low to Moderate Risk	Low to Moderate Risk

B14 Engineering Rationale

Block B14 is located mid-slope at an elevation range of 420m to 580m with a South aspect. The topography is broken with bench features throughout and minor rock protrusions near the road cutbanks. There are four streams located in the vicinity of the harvest area, including Boukhout Creek. Boukhout Creek is classified as an S2 Gully and is located outside the harvest area. Stream 15-4 is an S3 stream located on the western edge of the cutblock and is also outside the harvest area. Streams 14-1

and 14-2 are classified as S4 streams as they are located within the Sproat Lake Community Watershed. Falling and skidding across stream 14-1 and 14-2 is prohibited, except for at designated crossings as shown on the Harvest Plan map.

One Wildlife Tree Retention Area (WTRA) and three Timbered Leave Areas (TLA) have been established. The WTRA is located along the eastern boundary adjacent to Bookhout Creek and contributes to the retention targets and also serves as the Riparian Reserve Zone for this fish-bearing stream.

This block is to be harvested as a clearcut, with exception of the marked TLA's, using a ground based system. The entire block can be mechanically felled with the exception of areas marked as steep – hoechucking areas, which may require handfalling due to obstacles such as steep terrain and rock outcrops.

Individual retention of western red cedar and small non-merchantable douglas-fir is allowed along stream 14-1 and 14-2 as well as small (0.1ha) concentrated patches throughout the block. Retention trees must be free of bark damage and consist of trees with good health and vigour.

B15 Engineering Rationale

Block B15 is located mid-slope at an elevation range of 580m to 650m with a South aspect. The topography is generally rolling terrain with some steep hoe-chuck area above AS 12C. There are several areas marked out as sensitive soil (refer to Harvest Plan map). These areas contain standing water and deep soil, skidding of logs through these areas is to be avoided or conducted in dry weather conditions.

There are four streams located in the vicinity of the harvest area. Stream B15-4 is an S3 stream located on the western edge of the cutblock and is located outside the harvest area. Streams B15-1, B15-2 and B15-3 are classified as S4 streams as they are located within the Sproat Lake Community Watershed. Falling and skidding across streams B15-1, B15-2 and B15-3 is prohibited, except for at designated crossings as shown on the Harvest Plan map.

One Wildlife Tree Retention Area (WTRA) has been established. The WTRA is located along the western boundary adjacent to stream B15-4 and contributes to the retention targets of the cutblock.

This block is to be harvested as a clearcut using a ground based system. The entire block can be mechanically felled with the exception of areas marked as steep –hoechucking areas, which may require handfalling due to obstacles such as steep terrain.

Individual retention of western red cedar and small non-merchantable douglas-fir is allowed along stream B15-1, B15-2 and B15-3 as well as small (0.1ha), concentrated patches throughout the block. Retention trees must be free of bark damage and consist of trees with good health and vigour.

W14 Engineering Rationale

Block W14 is located on lower slopes at an elevation range of 100m to 150m with a South aspect. The topography is generally rolling terrain.

There are three streams located in the vicinity of the harvest area. Stream W14-1 and stream 1 are S4 streams and are located outside the harvest area. Stream W14-2 is classified as an S4 stream and contains a partial cut prescription on both sides of it, marked out in orange and black candy-stripe ribbon. Trees marked for removal within this area are painted with blue dots. Falling and skidding across stream W14-2 is prohibited.

One Wildlife Tree Retention Area (WTRA) has been established. The WTRA is located along FC 9 to FC 10 and contains some remnant fir vets, which contribute to stand level diversity.

The block includes a clearcut treatment unit (3.4ha) and a partial cut area (1.8ha). The partial cut areas are marked in the field with orange and black candy-stripe ribbon and trees marked for removal have been painted with blue dots. Harvest blue dotted trees only. Non-marked leave trees may be substituted for safety reasons but alternative trees of the same diameter and species must be retained. The area along the powerlines from FC 11 to FC 13 is prescribed as clearcut. Any non-merch trees that are not a hazard to blowdown onto the powerline may be left standing along this edge. These retention trees must be free of bark damage and consist of trees with good health and vigour.

The area along the powerline is a safety hazard to falling operations. Falling within 1 and ½ tree lengths of the powerlines must be done by a certified arborist and/or with machine assist with positive directional control. These areas are identified on the harvesting map. The remainder of the block can be mechanically felled with the exception of the partial cut areas, where the blue painted trees may need to be hand-felled into the clearcut corridors.

W16 Engineering Rationale

Block W16 is located mid-slope at an elevation range of 300m to 420m with a South aspect. The topography is generally rolling terrain with some steep hoe-chuck area above ASH 6 with scattered exposed rock.

There are four streams located in the vicinity of the harvest area. Streams W16-2, W16-3, W16-4 and W16-5 are classified as S4 streams as they are located within the Sproat Lake Community Watershed. Falling and skidding across these streams is prohibited, except for at designated crossings as shown on the Harvest Plan map.

One Wildlife Tree Retention Area (WTRA) has been established. The WTRA is located along the western boundary adjacent to a S3 stream and contributes to the retention targets of the cutblock.

This block is to be harvested as a clearcut using a ground based system. The entire block can be mechanically felled with the exception of areas marked as steep –hoechucking areas, which may require handfalling due to obstacles such as steep terrain.

Individual retention of western red cedar and small non-merchantable douglas-fir is allowed along stream W16-2, W16-3, W16-4 and W16-5 as well as small (0.1ha), concentrated patches throughout the block.

Retention trees must be free of bark damage and consist of trees with good health and vigour.

Road Construction

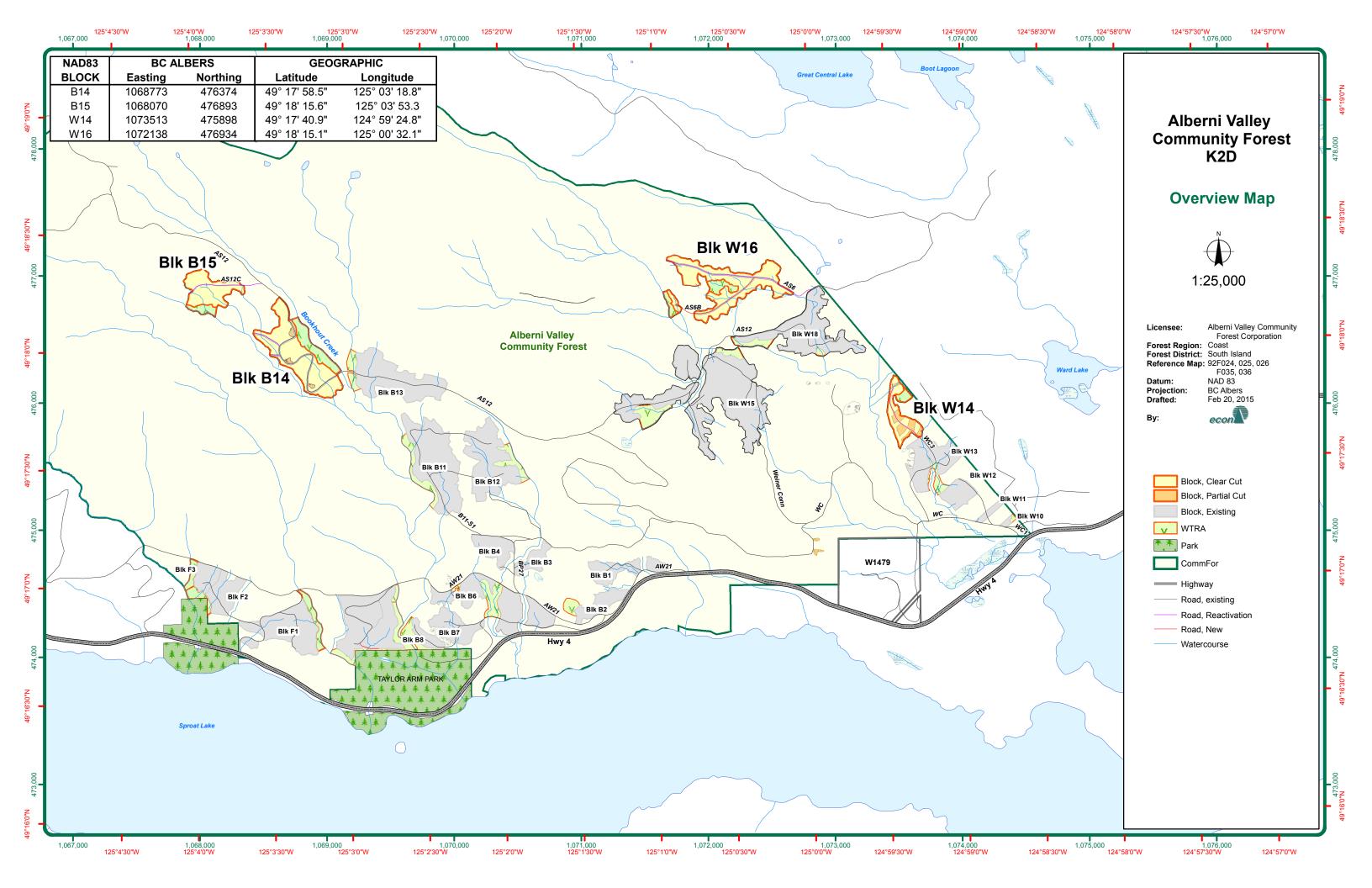
Road construction for these four blocks is a combination of re-construction and new construction. Table 4 summarizes each segment of road and its construction type. Road quarries are marked on the road construction maps.

Table 4: Road Construction Summary

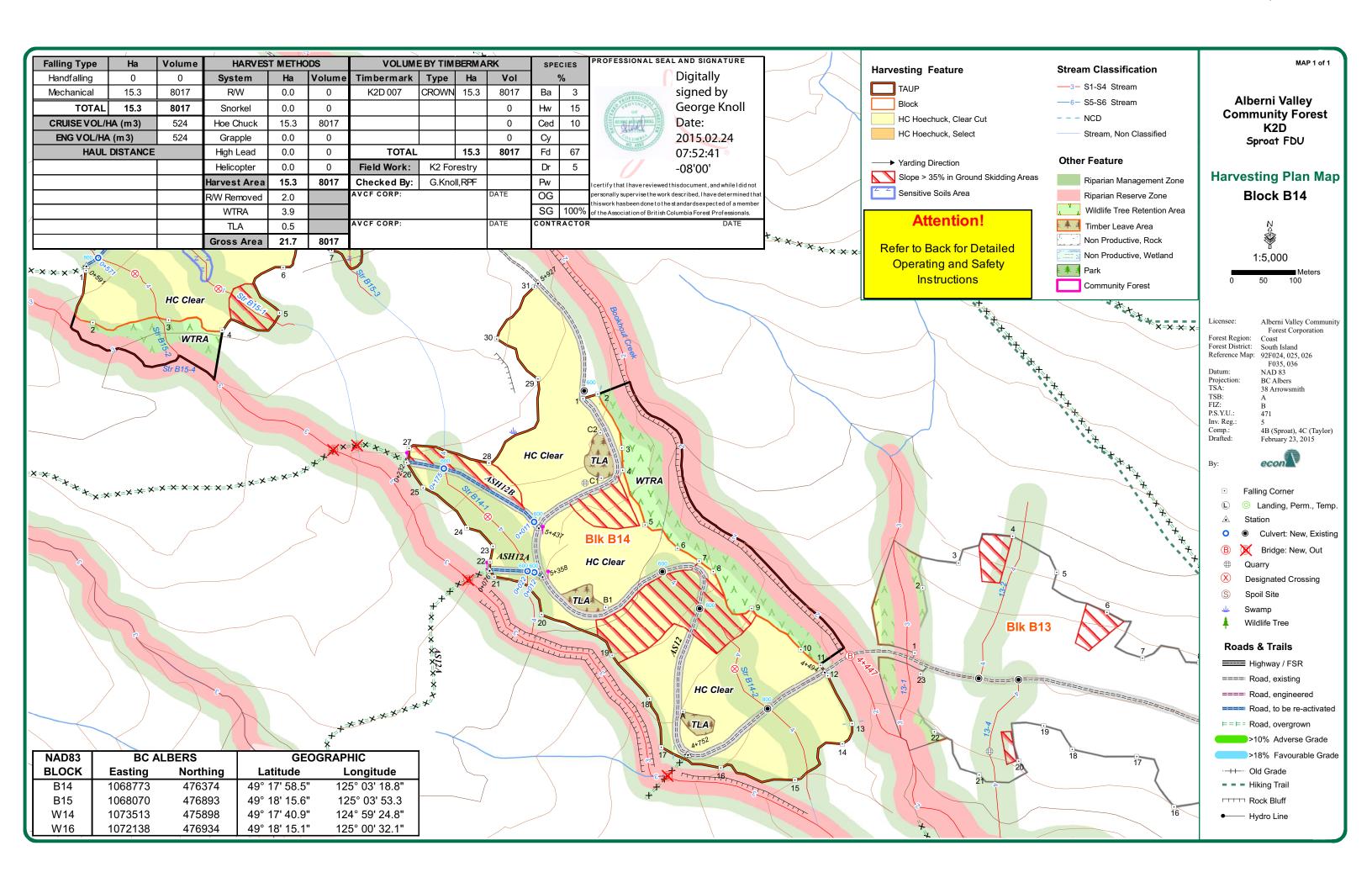
Road Name	From Station:	To Station:	Section Length Status: (m):		Timber mark:
ASH 12A	0	76	76	De-activated. Re-construction includes re- surfacing, installation of culverts, brushing and widening roadside vegetation.	K2D 0R1
ASH 12B	0	232	232	De-activated. Re-construction includes re- surfacing, installation of culverts, brushing and widening roadside vegetation.	K2D 0R1
ASH 12C	0	591	591	De-activated. Minor Re-construction includes installation of culverts and brushing and widening roadside vegetation.	K2D 0R1
ASH 6	0	1176	1176	De-activated. Re-construction includes re- surfacing, installation of culverts, brushing and widening roadside vegetation.	K2D 0R1
ASH 6B	0	728 728	728	New construction.	K2D 0R1
WC 3	846	1371	525	New construction.	K2D 0R1
Total All Roads			3328		

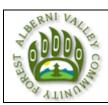
Cruising

CP 007 was cruised to Ministry of Forests Standards with full measure and count plots established on a 100m x 100m cruise grid. This methodology resulted in a total of 56 plots (22 count and 34 full-measure) for an average of 1.3 plots per hectare and an average of 4.4 cruised trees per plot. The four blocks were compiled as four individual timber types (each block was its own type). The following table summarizes the results of the cruise plan (excluding any outside RoW leading to the blocks).


Table 5: Cruise Summary

Attributes	Block B14	Block B15	Block W14	Block W16
Net harvest area	15.3	7.6	5.8	15.8
(includes RoW volume not already removed)				
Species Composition	Fd _{67%} Cw _{10%} Hw _{15%} Ba _{3%} Dr _{5%}	Fd _{79%} Cw _{15%} Hw _{2%} Ba _{3%} Dr _{1%}	Fd _{99%} Cw _{1%}	Fd _{81%} Cw _{4%} Dr _{15%}
Avg m ³ /ha	523.5	431.2	524.5	405.5
Cruised Harvest Volume	8009.6m ³	3277.1m ³	3042.1m ³	6406.9m ³


Refer to Appendix 8 for the Cruise Report.


Appendices

Appendix 1: CP 007 Overview Map

Appendix 2: Harvest Map and Instructions

HARVESTING INSTRUCTIONS – OPENING # B14

ACCESS ROAD: AS12 CUTTING PERMIT: NO. 7 TIMBERMARK: K2D 007

EMPLOYEE REQUIREMENTS

1) All employees, supervisors and contractors associated with these Harvesting Instructions shall be fully advised of its contents and requirements.

2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) All ditches and culverts must remain as free flowing as possible through all phases of harvesting.
- 3) Cutblock B 14 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible.
- **4)** Cutblock B 14 is within a Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gauges should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

FORESTRY

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

FIRST NATIONS

1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural feature.

FALLING of SNAGS and DANGER TREES

1) In accordance with WSBC Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.

2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WSBC regulations.

3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS

1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.

2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter

YARDING and LOADING PRESCRIPTIONS

- 1) No roadside landing of logs within 3 meters of any streambank along all roadsides. All drainage structures will be maintained and remain functional.
- 2) Avoid excessive ground lead gouging due to surface erosion potential. If soil disturbance occurs, then grass seeding will be required.
- 3) During the bark peeling stage of growth, the tree bole is highly susceptible to damage. Contact with retention trees during harvesting operation should be avoided between April 1 st and June 15 th.
- 4) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternative trees must be retained and should be well rooted and of the same species, diameter and vigor.
- 5) No more than 10% of the retention trees in the aggregate or dispersed retention areas or single retention trees in this cutblock may have significant damage.

Significant damage to Hw, Fd, and Cw is defined as a tree with:

One or more wounds (i.e. exposed cambium) that girdle more than 1/3 the circumference of the stem.

Any wounds on a supporting root within one metre of the stem. A gouge – a wound that penetrates (splintered) into the sapwood or deeper.

Additionally, for Hw and Cw only: A wound >400cm² on the stem.

SAFETY Road and in-block safety hazards associated with block B14 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or

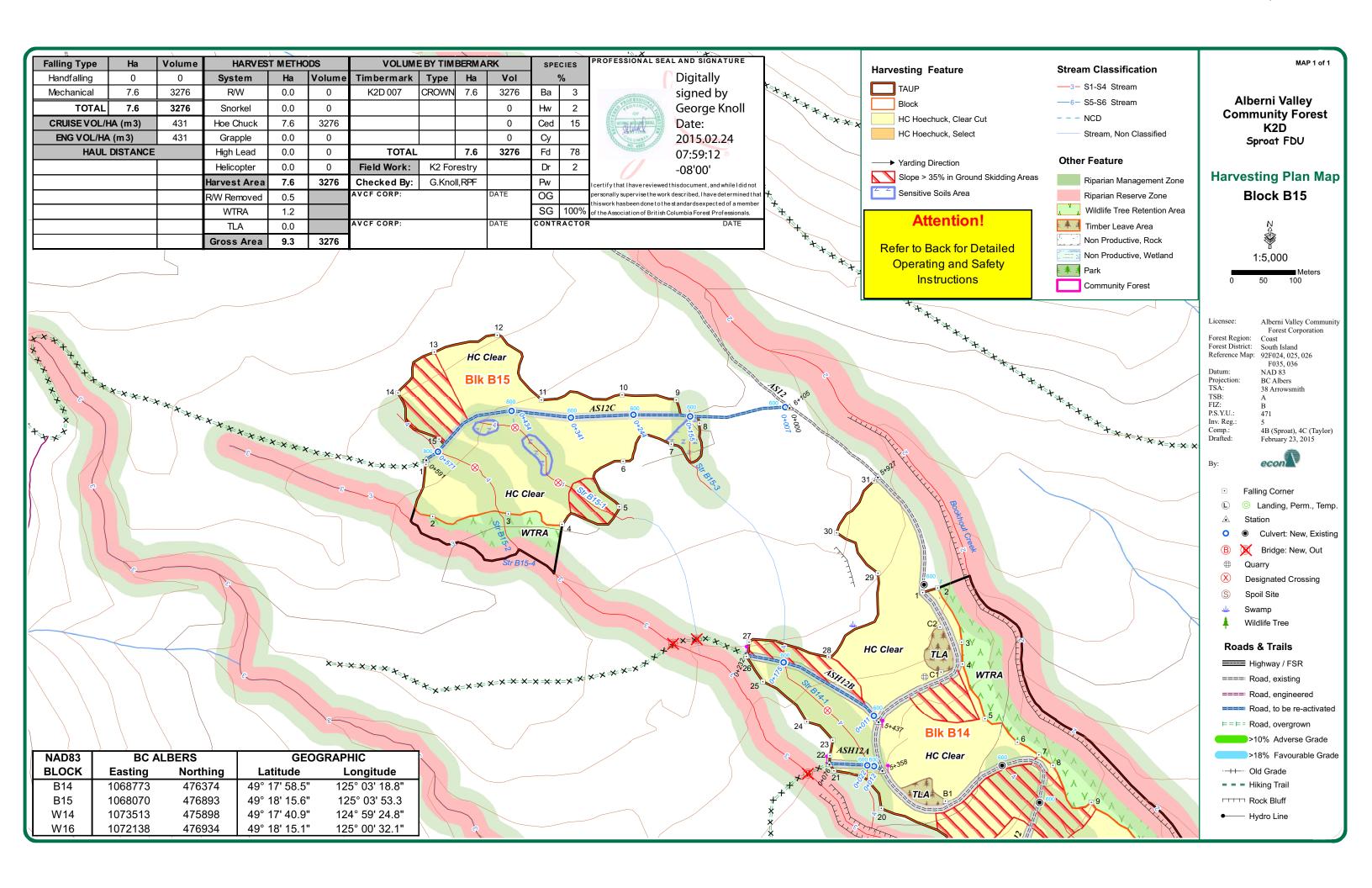
develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

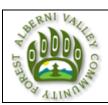
Road segments with gradients > 18% have been identified on the Overview Map. Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to suit the traction conditions. Hauling for B14 is not permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC

activities to suit the traction conditions. Hauling for B14 is not permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC steep grade decent guidelines. The Ministry of Transportation guidelines are to be followed when hauling on the highway.

SPECIFIC BLOCK COMMENTS

MACHINE OPERATORS WILL MONITOR SOILS FOR COMPACTION DURING RAIN EVENTS, AND MOVE TO DRIER AREAS WITHIN THE CUTBLOCK SHOULD COMPACTION AND/OR RUTTING OCCUR.


HARVESTING ISSUES


MACHINE OPERATORS SHOULD BE AWARE OF STEEP HOE CHUCK AREAS WITHIN THE CUTBLOCK FALLING BOUNDARY. THESE AREAS ARE IDENTIFIED ON THE HARVESTING MAP

NC No cleaning required. Keep channel free on introduced debris concurrent with yarding.

RIPARIAN MANAGEMENT STRATEGIES

RIPARIAN MANAG	EMENT STR	ATEGIES
Creek I.D.	CLASS	MANAGEMENT STRATEGIES FOR RIPARIAN MANAGEMENT ZONES (RMZ) INCLUDING PROTECTING STREAM
	NCD	- NCD(s) within the harvest area will be FX and YX. No RMZ is required.
		- Note all streams lie within the Sproat Lake Community Watershed, minimize sedimentation at all costs.
		STREAM REACH AND RMA IS OUTSIDE OF THE HARVEST AREA
		STREAM REACH OUTSIDE HARVEST AREA, PORTIONS OF THE RMA WITHIN THE HARVEST AREA
Bookhout Creek	S2	FA YA NC
B15-4	S3	FA YA NC
		PORTIONS OF STREAM REACH AND RMA ARE WITHIN THE HARVEST AREA
B14-1	S4	FA YA, YX at designated machine crossings only. NC
B14-2	S4	FA YA, YX at designated machine crossings only. NC
		PRESCRIPTION DEFINITIONS
	YX	Yard across Acceptable
	FX	
	FA/BL	, , , , , , , , , , , , , , , , , , , ,
	FA	Fall Away. Timber is to be felled away.
	YA	Yard Away. Timber is to be yarded away. In order to improve deflection, cables are allowed to be suspended above the stream. Non-fish streams: merchantable leaners and
		danger trees that have been felled across the stream will, by necessity, be yarded across the stream. Fish streams: Leaners and danger trees which have been felled across the
		stream will be left unless detrimental to the stream.
	НН	100% harvested (no retention of saplings)
	RS	Retain saplings on the streambanks (non-merchantible)
	FE	Feathered edge.
	BPT	Blue painted trees (selected for removal). Faller's choice of alternate tree if unable to fall painted tree safely.
	NHZ	No harvest zone. Trees are to be felled away from the zone. Safe trees that cannot be felled away are to be left as part of the NHZ. Danger trees must be felled and will be left for
		future LWD or be removed if detrimental to the stream.
	MFZ	Machine free zone.
	MC	Machine Clean transportable introduced large woody debris (LWD) and accumulations concurrent with yarding.
	HC	Hand Clean introduced transportable debris.

HARVESTING INSTRUCTIONS – OPENING # B15

ACCESS ROAD: AS12 CUTTING PERMIT: NO. 7 TIMBERMARK: K2D 007

EMPLOYEE REQUIREMENTS

1) All employees, supervisors and contractors associated with these Harvesting Instructions shall be fully advised of its contents and requirements.

2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) All ditches and culverts must remain as free flowing as possible through all phases of harvesting.
- 3) Cutblock B 15 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible.
- **4)** Cutblock B 15 is withina Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gauges should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest

FIRST NATIONS

1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural

FALLING of SNAGS and DANGER TREES

1) In accordance with WSBC Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.

2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WSBC regulations.

3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris

CUTBLOCK BOUNDARY TREATMENTS

1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.

2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter

YARDING and LOADING PRESCRIPTIONS

- 1) No roadside landing of logs within 3 meters of any streambank along all roadsides. All drainage structures will be maintained and remain functional.
- 2) Avoid excessive ground lead gouging due to surface erosion potential. If soil disturbance occurs, then grass seeding will be required.
- 3) During the bark peeling stage of growth, the tree bole is highly susceptible to damage. Contact with retention trees during harvesting operation should be avoided between April 1 st and June 15 th.
- 4) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternative trees must be retained and should be well rooted and of the same species, diameter and vigor.
- 5) No more than 10% of the retention trees in the aggregate or dispersed retention areas or single retention trees in this cutblock may have significant damage.

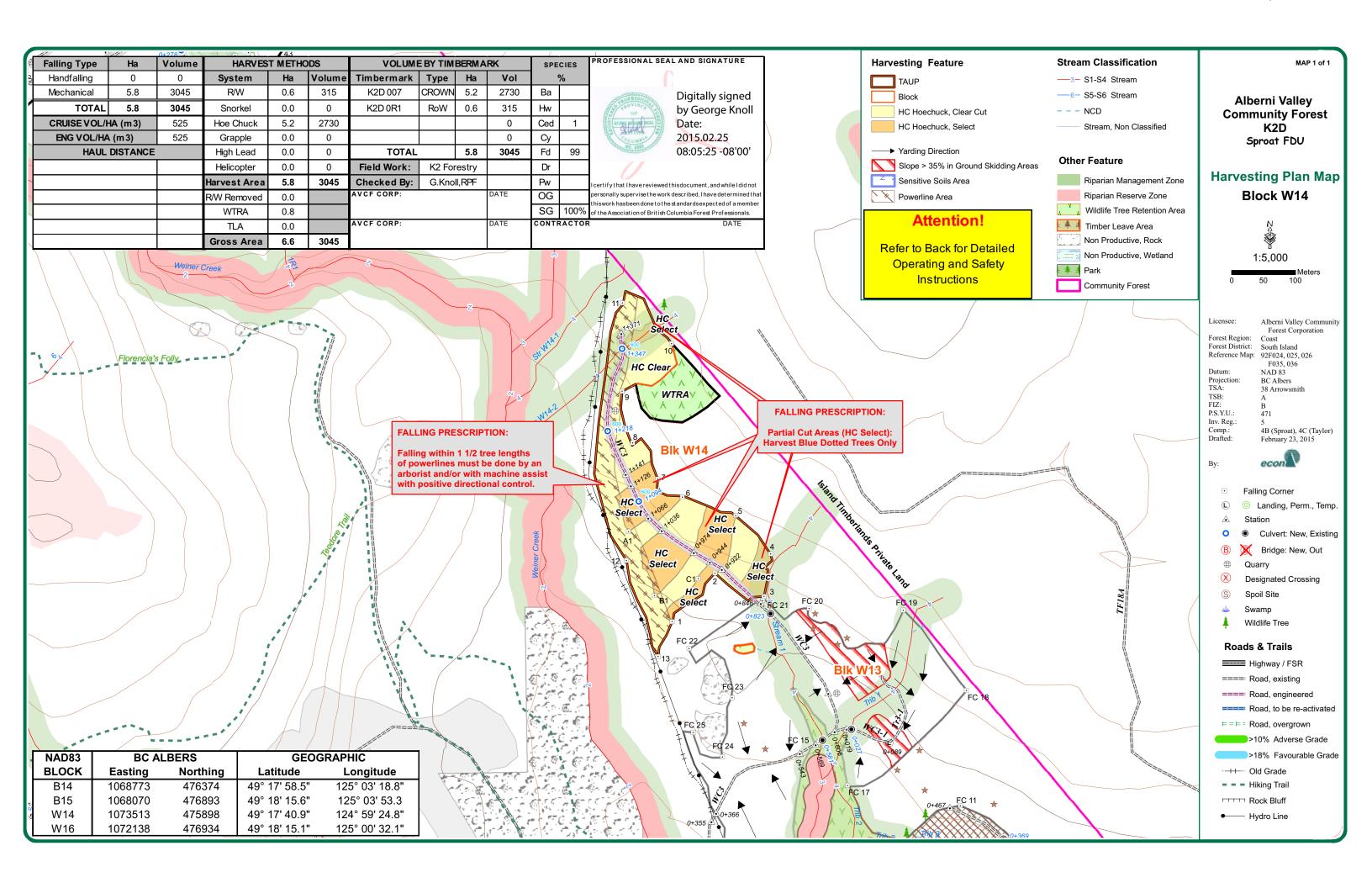
Significant damage to Hw, Fd, and Cw is defined as a tree with:

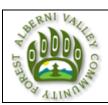
One or more wounds (i.e. exposed cambium) that girdle more than 1/3 the circumference of the stem.

Any wounds on a supporting root within one metre of the stem. A gouge – a wound that penetrates (splintered) into the sapwood or deeper.

Additionally, for Hw and Cw only: A wound >400cm² on the stem.

SAFETY


Road and in-block safety hazards associated with block B15 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).


Road segments with gradients > 18% have been identified on the Overview Map. Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to suit the traction conditions. Hauling for B15 is not permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC steep grade decent guidelines. The Ministry of Transportation guidelines are to be followed when hauling on the highway. **SPECIFIC BLOCK COMMENTS**

MACHINE OPERATORS WILL MONITOR SOILS FOR COMPACTION DURING RAIN EVENTS, AND MOVE TO DRIER AREAS WITHIN THE CUTBLOCK SHOULD COMPACTION AND/OR RUTTING OCCUR. NOTE THE SENSITIVE SOILS AREAS HIGHLIGHTED ON THE HARVEST PLAN MAP.

HARVESTING ISSUES MACHINE OPERATORS SHOULD BE AWARE OF STEEP HOE CHUCK AREAS WITHIN THE CUTBLOCK FALLING BOUNDARY. THESE AREAS ARE IDENTIFIED ON THE HARVESTING MAP

RIPARIAN MANAGEMENT STRATEGIES Creek I.D. CLASS MANAGEMENT STRATEGIES FOR RIPARIAN MANAGEMENT ZONES (RMZ) INCLUDING PROTECTING STREAM NCD NCD(s) within the harvest area will be FX and YX. No RMZ is required. Note all streams lie within the Sproat Lake Community Watershed, minimize sedimentation at all costs. STREAM REACH AND RMA IS OUTSIDE OF THE HARVEST AREA STREAM REACH OUTSIDE HARVEST AREA, PORTIONS OF THE RMA WITHIN THE HARVEST AREA B15-4 S3 FA YA NC PORTIONS OF STREAM REACH AND RMA ARE WITHIN THE HARVEST AREA B15-1 S4 FA YA, YX at designated machine crossings only. NC B15-2 **S4** FA YA, YX at designated machine crossings only. NC PRESCRIPTION DEFINITIONS YΧ Yard across Acceptable FX Fall Across Accepable FA/BL Fall Away. Timber is to be felled away. Leaners and hazard trees that cannot be safely felled away shall be felled and left bridging the stream FΑ Fall Away. Timber is to be felled away. YΑ Yard Away. Timber is to be yarded away. In order to improve deflection, cables are allowed to be suspended above the stream. Non-fish streams: merchantable leaners and danger trees that have been felled across the stream will, by necessity, be yarded across the streams. Eaners and danger trees which have been felled across the stream will be left unless detrimental to the stream. 100% harvested (no retention of saplings) HH Retain saplings on the streambanks (non-merchantible) RS Feathered edge. FE BPT Blue painted trees (selected for removal). Faller's choice of alternate tree if unable to fall painted tree safely. NHZ No harvest zone. Trees are to be felled away from the zone. Safe trees that cannot be felled away are to be left as part of the NHZ. Danger trees must be felled and will be left for future LWD or be removed if detrimental to the stream MFZ Machine free zone Machine Clean transportable introduced large woody debris (LWD) and accumulations concurrent with yarding. HC Hand Clean introduced transportable debris. No cleaning required. Keep channel free on introduced debris concurrent with yarding. NC

HARVESTING INSTRUCTIONS – OPENING # W14

ACCESS ROAD: WC 3 CUTTING PERMIT: NO. 7 TIMBERMARK: K2D 007

EMPLOYEE REQUIREMENTS

1) All employees, supervisors and contractors associated with these Harvesting Instructions shall be fully advised of its contents and requirements.

2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) All ditches and culverts must remain as free flowing as possible through all phases of harvesting.
- 3) Cutblock W14 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible.
- **4)** Cutblock W14 is within a Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gauges should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest

FIRST NATIONS

1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural

FALLING of SNAGS and DANGER TREES

1) In accordance with WSBC Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. EXCEPT FOR AREAS ADJACENT TO ITLP PROPERTY FROM FC 10 TO 11. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.

2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WSBC regulations.

3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS

1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.

2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter

YARDING and LOADING PRESCRIPTIONS

- 1) No roadside landing of logs within 3 meters of any streambank along all roadsides. All drainage structures will be maintained and remain functional.
- 2) Avoid excessive ground lead gouging due to surface erosion potential. If soil disturbance occurs, then grass seeding will be required.
- 3) During the bark peeling stage of growth, the tree bole is highly susceptible to damage. Contact with retention trees during harvesting operation should be avoided between April 1 st and June 15 th.
- 4) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternative trees must be retained and should be well rooted and of the same species, diameter and vigor.
- 5) No more than 10% of the retention trees in the aggregate or dispersed retention areas or single retention trees in this cutblock may have significant damage.

Significant damage to Hw, Fd, and Cw is defined as a tree with:

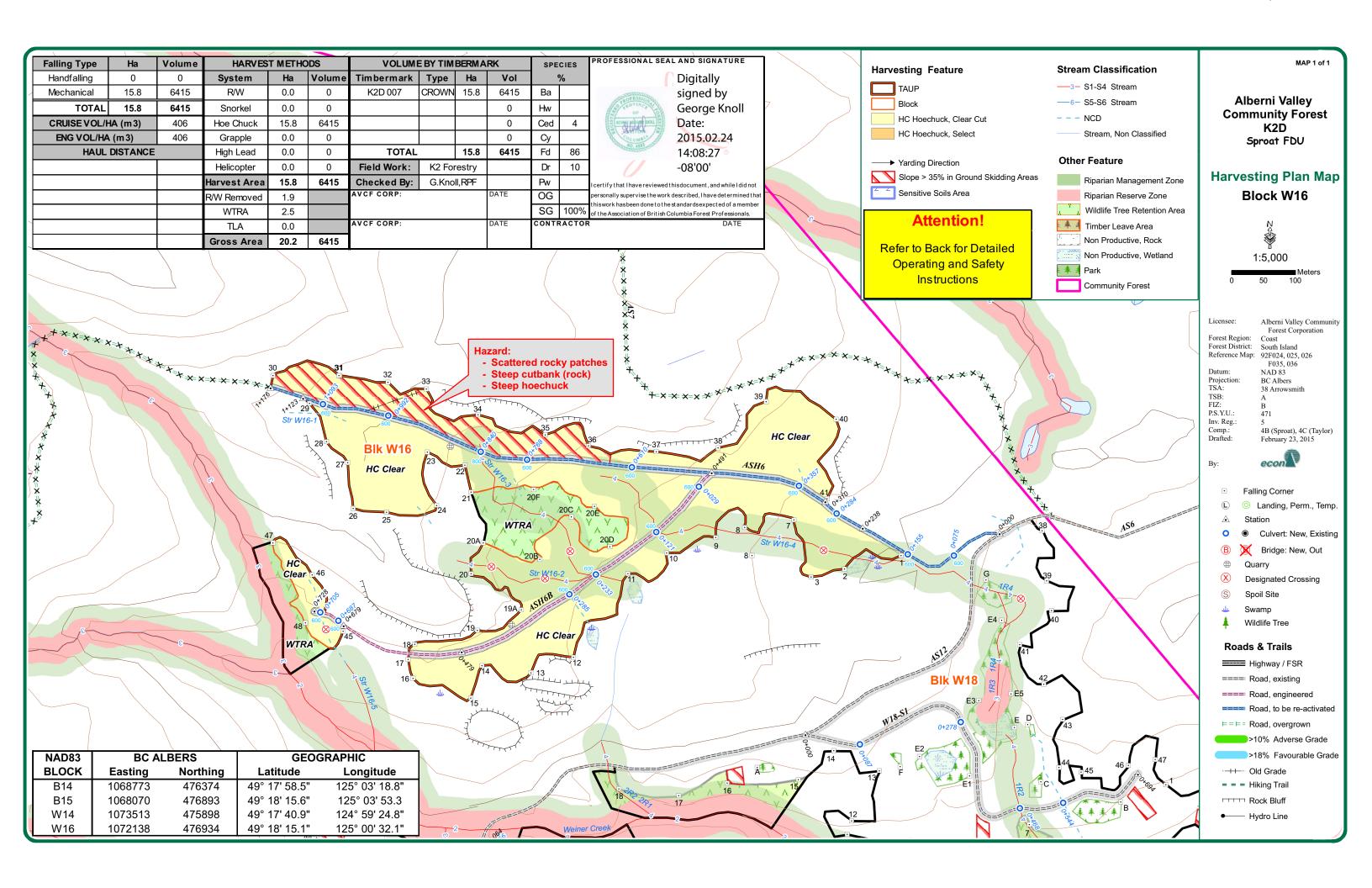
One or more wounds (i.e. exposed cambium) that girdle more than 1/3 the circumference of the stem.

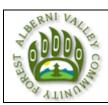
Any wounds on a supporting root within one metre of the stem. A gouge – a wound that penetrates (splintered) into the sapwood or deeper.

Additionally, for Hw and Cw only: A wound >400cm² on the stem.

Road and in-block safety hazards associated with block W14 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

No Road segments with gradients > 18% access this block. Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to suit the


traction conditions. Hauling for W14 is not permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC steep grade decent guidelines. The Ministry of Transportation guidelines are to be followed when hauling on the highway. **SPECIFIC BLOCK COMMENTS**


MACHINE OPERATORS WILL MONITOR SOILS FOR COMPACTION DURING RAIN EVENTS, AND MOVE TO DRIER AREAS WITHIN THE CUTBLOCK SHOULD COMPACTION AND/OR RUTTING OCCUR. PARTIAL CUT AREAS MARKED OUT WITH BLACK AND ORANGE CANDY-STRIPE RIBBON. HARVEST BLUE-PAINTED TREES ONLY. NON-MARKED LEAVE TREES MAY BE SUBSTITUTED FOR SAFETY REASONS BUT ALTERNATIVE TREES OF THE SAME DIAMETER AND SPECIES MUST BE RETAINED. THE AREA ALONG THE POWERLINES FROM FC 11 TO FC 13 IS PRESCRIBED AS CLEARCUT. ANY NON-MERCH TREES THAT ARE NOT A HAZARD TO BLOWDOWN ONTO THE POWERLINE MAY BE LEFT ALONG THIS EDGE.

HARVESTING ISSUES

MACHINE OPERATORS SHOULD BE AWARE OF POWERLINES LOCATED ALONG THE EDGE OF THE CUTBLOCK. FALLING WITHIN 1 AND ½ TREE LENGTHS MUST BE DONE BY A CERTIFIED ARBORIST AND/OR WITH MACHINE ASSIST WITH POSITIVE DIRECTIONAL CONTROL. THESE AREAS ARE IDENTIFIED ON THE HARVESTING MAP

RIPARIAN MANAGI	EMENT STR	ATEGIES
Creek I.D.	CLASS	MANAGEMENT STRATEGIES FOR RIPARIAN MANAGEMENT ZONES (RMZ) INCLUDING PROTECTING STREAM
	NCD	- NCD(s) within the harvest area will be FX and YX. No RMZ is required.
		- Note all streams lie within the Sproat Lake Community Watershed, minimize sedimentation at all costs.
		STREAM REACH AND RMA IS OUTSIDE OF THE HARVEST AREA
		STREAM REACH OUTSIDE HARVEST AREA, PORTIONS OF THE RMA WITHIN THE HARVEST AREA
W14-1	S4	FA YA NC
Stream 1	S4	FA YA NC
		PORTIONS OF STREAM REACH AND RMA ARE WITHIN THE HARVEST AREA
W14-2	S4	FA YA NC. Partial cut in the RMA. Harvest Blue Painted trees only.
		PRESCRIPTION DEFINITIONS
	YX	Yard across Acceptable
	FX	
	FA/BL	Fall Away. Timber is to be felled away. Leaners and hazard trees that cannot be safely felled away shall be felled and left bridging the stream.
	FA	Fall Away. Timber is to be felled away.
	YA	Yard Away. Timber is to be yarded away. In order to improve deflection, cables are allowed to be suspended above the stream. Non-fish streams: merchantable leaners and
		danger trees that have been felled across the stream will, by necessity, be yarded across the stream. Fish streams: Leaners and danger trees which have been felled across the
		stream will be left unless detrimental to the stream.
	НН	100% harvested (no retention of saplings)
	RS	Retain saplings on the streambanks (non-merchantible)
	FE	· · ·
	BPT	Blue painted trees (selected for removal). Faller's choice of alternate tree if unable to fall painted tree safely.
	NHZ	, , , , , , , , , , , , , , , , , , ,
		future LWD or be removed if detrimental to the stream.
	MFZ	Machine free zone.
	MC	
	HC	·
	NC	No cleaning required. Keep channel free on introduced debris concurrent with yarding.

HARVESTING INSTRUCTIONS – OPENING # W16

ACCESS ROAD: ASH 6 **CUTTING PERMIT: NO. 7** TIMBERMARK: K2D 007

EMPLOYEE REQUIREMENTS

1) All employees, supervisors and contractors associated with these Harvesting Instructions shall be fully advised of its contents and requirements.

2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) All ditches and culverts must remain as free flowing as possible through all phases of harvesting.
- 3) Cutblock W16 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible.
- **4)** Cutblock W16 is within a Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gauges should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest

FIRST NATIONS

1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural

FALLING of SNAGS and DANGER TREES

1) In accordance with WSBC Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.

2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WSBC regulations.

3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS

1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.

2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter

YARDING and LOADING PRESCRIPTIONS

- 1) No roadside landing of logs within 3 meters of any streambank along all roadsides. All drainage structures will be maintained and remain functional.
- 2) Avoid excessive ground lead gouging due to surface erosion potential. If soil disturbance occurs, then grass seeding will be required.
- 3) During the bark peeling stage of growth, the tree bole is highly susceptible to damage. Contact with retention trees during harvesting operation should be avoided between April 1 st and June 15 th.
- 4) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternative trees must be retained and should be well rooted and of the same species, diameter and vigor.
- 5) No more than 10% of the retention trees in the aggregate or dispersed retention areas or single retention trees in this cutblock may have significant damage.

Significant damage to Hw, Fd, and Cw is defined as a tree with:

One or more wounds (i.e. exposed cambium) that girdle more than 1/3 the circumference of the stem.

Any wounds on a supporting root within one metre of the stem. A gouge – a wound that penetrates (splintered) into the sapwood or deeper.

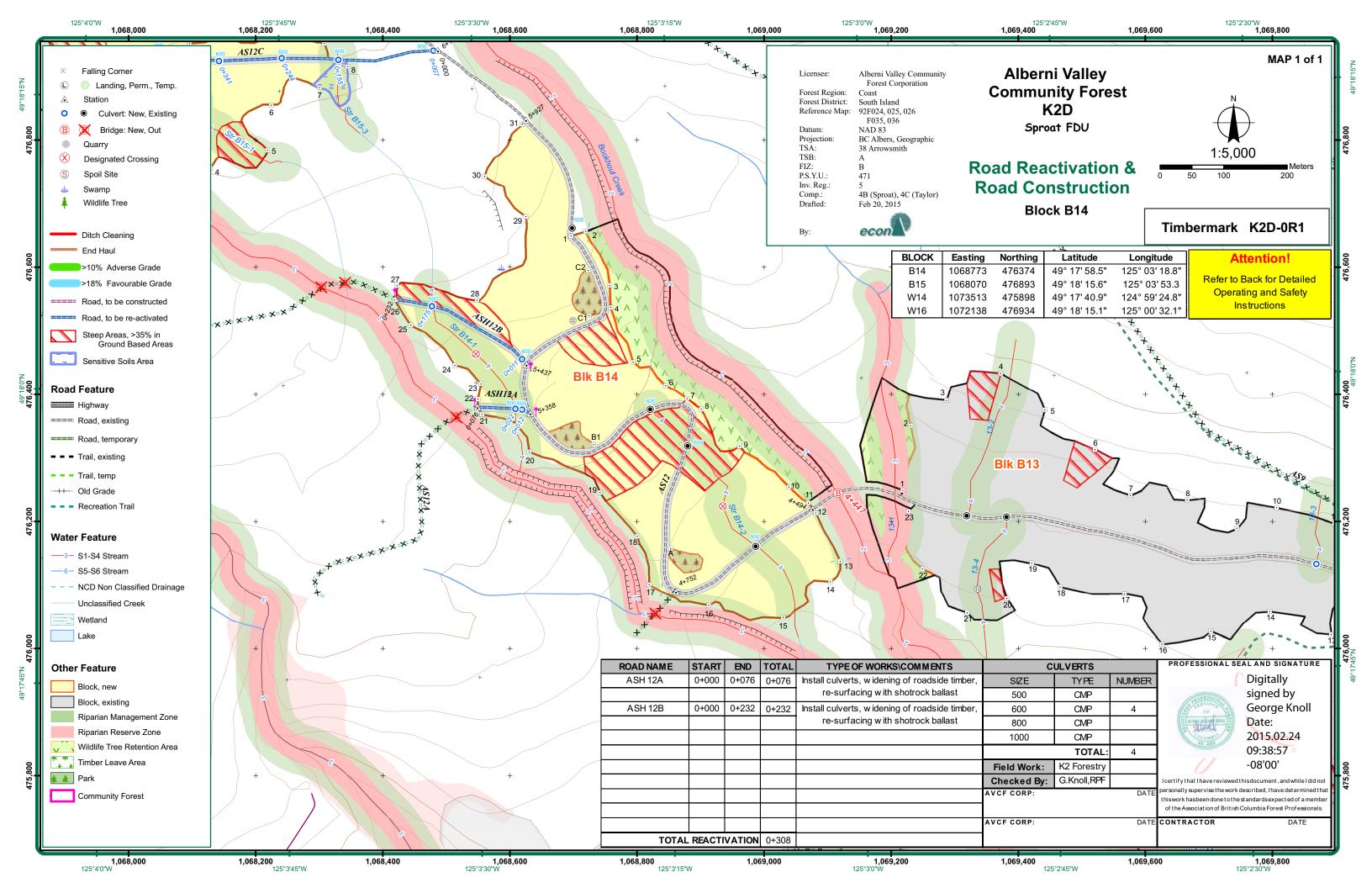
Additionally, for Hw and Cw only: A wound >400cm² on the stem.

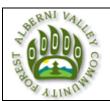
SAFETY

Road and in-block safety hazards associated with block W16 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

Road segments with gradients > 18% have been identified on the Overview Map. Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to suit the traction conditions. Hauling for W16 is not permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC steep grade decent guidelines. The Ministry of Transportation guidelines are to be followed when hauling on the highway.

SPECIFIC BLOCK COMMENTS


MACHINE OPERATORS WILL MONITOR SOILS FOR COMPACTION DURING RAIN EVENTS, AND MOVE TO DRIER AREAS WITHIN THE CUTBLOCK SHOULD COMPACTION AND/OR RUTTING OCCUR.


HARVESTING ISSUES

MACHINE OPERATORS SHOULD BE AWARE OF STEEP HOE CHUCK AREAS WITHIN THE CUTBLOCK FALLING BOUNDARY. THESE AREAS ARE IDENTIFIED ON THE HARVESTING MAP

RIPARIAN MANAGE	MENT STR	ATEGIES
Creek I.D.	CLASS	MANAGEMENT STRATEGIES FOR RIPARIAN MANAGEMENT ZONES (RMZ) INCLUDING PROTECTING STREAM
16-1 16-5	NCD	 NCD(s) within the harvest area will be FX and YX. No RMZ is required. Note all streams lie within the Sproat Lake Community Watershed, minimize sedimentation at all costs.
		STREAM REACH AND RMA IS OUTSIDE OF THE HARVEST AREA
		STREAM REACH OUTSIDE HARVEST AREA, PORTIONS OF THE RMA WITHIN THE HARVEST AREA
West Un-named creek	S3	FA YA NC
		PORTIONS OF STREAM REACH AND RMA ARE WITHIN THE HARVEST AREA
16-2	S4	FA YA, YX at designated machine crossings only. NC
16-3	S4	FA YA, YX at designated machine crossings only. NC
16-4	S4	FA YA, YX at designated machine crossings only. NC
		PRESCRIPTION DEFINITIONS
	YX	Yard across Acceptable
	FX	Fall Across Accepable
	FA/BL	Fall Away. Timber is to be felled away. Leaners and hazard trees that cannot be safely felled away shall be felled and left bridging the stream.
	FA	Fall Away. Timber is to be felled away.
	YA	Yard Away. Timber is to be yarded away. In order to improve deflection, cables are allowed to be suspended above the stream. Non-fish streams: merchantable leaners and
		danger trees that have been felled across the stream will, by necessity, be yarded across the stream. Fish streams: Leaners and danger trees which have been felled across the
		stream will be left unless detrimental to the stream.
	НН	100% harvested (no retention of saplings)
	RS	Retain saplings on the streambanks (non-merchantible)
	FE	Feathered edge.
	BPT	Blue painted trees (selected for removal). Faller's choice of alternate tree if unable to fall painted tree safely.
	NHZ	No harvest zone. Trees are to be felled away from the zone. Safe trees that cannot be felled away are to be left as part of the NHZ. Danger trees must be felled and will be left for the number of the NHZ.
		future LWD or be removed if detrimental to the stream.
	MFZ	Machine free zone.
	MC	Machine Clean transportable introduced large woody debris (LWD) and accumulations concurrent with yarding.
	НС	Hand Clean introduced transportable debris.
	NC	No cleaning required. Keep channel free on introduced debris concurrent with yarding.

Appendix 3: Road Construction Map and Instructions

ROAD INSTRUCTIONS – OPENING # B14

ACCESS ROAD: AS12 ROAD PERMIT: R18553 TIMBERMARK: K2D 0R1

ROAD CONSTRUCTION SUMMARY

Road Name	Start Station	End Station	Type of Works/Comments		
AS 12A	0+000	0+076	Re-construction. Install culverts, widening of roadside timber, re-surfacing with shotrock ballast.		
AS 12B 0+000 0+232 Re-construction. Install culverts, widening of roadside timber, re-surfacing with shotrock ballast.					

STREAM CROSSINGS and CULVERT INSTALLATIONS

Road Name	Station	Riparian ID	Riparian Class	Debris Transport Potential	Culvert/ Bridge Size	Designed Peak Flow	Special instructions for operations within or adjacent to RMA
AS 12A	0+012	-	-	-	600	X-Drain	
AS 12A	0+022	B14-1	S4	Low	600	Q100	
AS 12B	0+011	-	-	-	600	X-Drain	OPENING B14 LIES WITHIN THE SPROAT LAKE COMMUNITY WATERSHED.
AS 12B	0+175	B14-1	S4	Low	600	Q100	ALL STREAM CROSSINGS ARE TO BE ARMORED WITH COARSE ROCK MATERIAL TO MINIMIZE THE TRANSPORT OF FINES DOWN STREAM.
							MATERIAL TO MINIMIZE THE MANSI ORT OF TIMES DOWN STREAM.

EMPLOYEE REQUIREMENTS

- 1) All employees, supervisors and contractors associated with these Road Instructions shall be fully advised of its contents and requirements.
- 2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) Cutblock B 14 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible, follow the listed SOP's below:
- a.Ditch Cleaning: where needed, ditches are to be cleaned when conditions are dry. Ditchspoil is not to be windrowed along the road shoulder. On moderate slopes, the ditchspoil could be thinly spread on the slope below the road, but not heaped or piled against trees. Where the road is on steep slopes, the ditchspoil should be endhauled to a suitable spoil site.
- b. Culvert replacement: Where required culvert replacements are to be done during dry weather (except for emergency repairs or replacements). The inlet and outlet areas on new culverts, and the adjacent fill slopes, are to be armoured to prevent erosion or sloughing into the creek.
- c. Rock Ballasting of road surface: For new road construction, where the road is close to a stream channel, the road surface is to be ballasted with clean rock. The road surface is also to be rock ballasted for 30 metres either side of stream culverts.
- d. Road grading practices: grading is to be avoided during heavy rain. e. Shutdown or harvest completion: In preparation for a shutdown for a period longer than 30 days or at a harvest completion, the following measures will be taken:
- i. No excavated or endhauled material will be left piled in such a way as to become unstable during the shutdown period. Spoil sites, piles and fills willbe sloped uniformly to prevent instability.
- ii. Ditches and culverts will be left clear and functional, with adequate inlet basins to minimize the potential for plugging.
- iii. On sections of steep grades, cross ditches and back-up swales will be constructed where needed to minimize ditch erosion.
- iv. If road construction has reached a drainage course but a drainage structure has not been installed prior to shutdown, the drainage course will be left open and unimpeded.
- v. Where exposed silty soils could erode and enter surface streams or ditches connected to streams, silt fences, hay bales or erosion blankets will be applied as needed for temporary protection.
- 4) Cutblock B 14 is withina Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gages should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

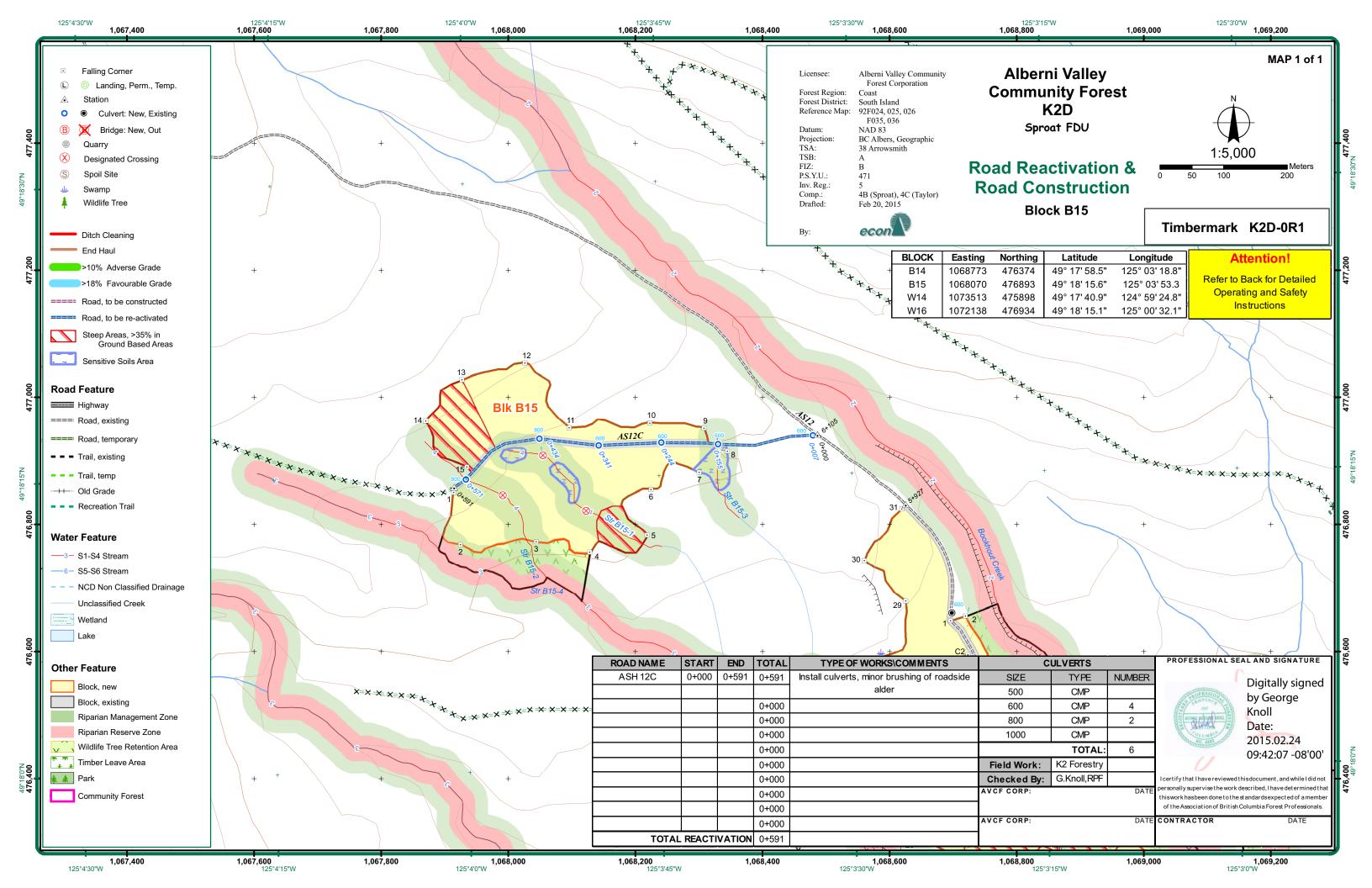
FIRST NATIONS

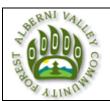
1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural feature.

FALLING of SNAGS and DANGER TREES

- 1) In accordance with the WCB Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.
- 2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WCB regulations.
- 3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS


- 1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.
- 2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter


ROAD CONSTRUCTION PRESCRIPTIONS

- 1) R/W clearing widths to be 20 meters unless a larger width is required for safety or otherwise prescribed.
- 2) Prior approval must be obtained from AVCF if falling beyond right-of-way clearing is required for spoil sites or quarries.
- 3) Proposed cross-drain culvert locations are approximate. Site specific installation to within ±25m is acceptable. Installation beyond this distance constitutes a 'change of plan' and requires prior approval from AVCF.
- 4) Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland. Do not park any equipment within an RMA overnight.
- 5) Ensure that licensed water works are notified of road activities 48 hours prior to activity.
- 6) RMA distances: STREAMS: S1 70 meters, S2 50 meters, S3 40 meters, S4 30 meters, S5 30 meters, S6 20 meters, LAKES: L1 10 meters, L3 30 meters, WETLANDS: W1, W5 – 50meters, W3 – 30 meters.
- 7) Avoid quarry locations within the RMA of any stream; where avoidance is not practical, quarries may be located within the RMA of a S6 stream if no impacts (i.e. increased sedimentation) will occur to the stream. All other streams (i.e. S1 to S5) require prior approval from AVCF before a quarry may be located within its RMA. Do not deck or process wood within RMA's.

SAFETY

Road and in-block safety hazards associated with block B14 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

ROAD INSTRUCTIONS – OPENING # B15

ACCESS ROAD: AS12 ROAD PERMIT: R18553 TIMBERMARK: K2D 0R1

ROAD CONSTRUCTION SUMMARY

Road Name	Start Station	End Station	Type of Works/Comments
AS 12C	0+000	0+591	Re-construction. Install culverts, minor brushing of roadside alder.

STREAM CROSSINGS and CULVERT INSTALLATIONS

Road Name	Station	Riparian ID	Riparian Class	Debris Transport Potential	Culvert/ Bridge Size	Designed Peak Flow	Special instructions for operations within or adjacent to RMA			
AS 12C	0+007	-	-	-	600	X-Drain				
AS 12C	0+155	-	-	-	600	X-Drain				
AS 12C	0+244	-	-	-	600	X-Drain	OPENING B15 LIES WITHIN THE SPROAT LAKE COMMUNITY WATERSHED.			
AS 12C	0+341	-	-	-	600	X-Drain	ALL STREAM CROSSINGS ARE TO BE ARMORED WITH COARSE ROCK MATERIAL TO MINIMIZE THE TRANSPORT OF FINES DOWN STREAM.			
AS 12C	0+434	NCD	NCD	Low	800	Q100	WATERIAL TO WIRNINGE THE TRANSPORT OF TIMES DOWN STREAM.			
AS 12C	0+571	B15-2	S4	Low	800	Q100				

EMPLOYEE REQUIREMENTS

- 1) All employees, supervisors and contractors associated with these Road Instructions shall be fully advised of its contents and requirements.
- 2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) Cutblock B 15 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible, follow the listed SOP's below:
- **a.Ditch Cleaning:** where needed, ditches are to be cleaned when conditions are dry. Ditchspoil is not to be windrowed along the road shoulder. On moderate slopes, the ditchspoil could be thinly spread on the slope below the road, but not heaped or piled against trees. Where the road is on steep slopes, the ditchspoil should be endhauled to a suitable spoil site.
- **b. Culvert replacement:** Where required culvert replacements are to be done during dry weather (except for emergency repairs or replacements). The inlet and outlet areas on new culverts, and the adjacent fill slopes, are to be armoured to prevent erosion or sloughing into the creek.
- **c. Rock Ballasting of road surface:** For new road construction, where the road is close to a stream channel, the road surface is to be ballasted with clean rock. The road surface is also to be rock ballasted for 30 metres either side of stream culverts.
- d. Road grading practices: grading is to be avoided during heavy rain. e. Shutdown or harvest completion: In preparation for a shutdown for a period longer than 30 days or at a harvest completion, the following measures will be taken:
- i. No excavated or endhauled material will be left piled in such a way as to become unstable duringthe shutdown period. Spoil sites, piles and fills willbe sloped uniformly to prevent instability.
- ii. Ditches and culverts will be left clear and functional, with adequate inlet basins to minimize the potential for plugging.
- iii. On sections of steep grades, cross ditches and back-up swales will be constructed where needed to minimize ditch erosion.
- iv. If road construction has reached a drainage course but a drainage structure has not been installed prior to shutdown, the drainage course will be left open and unimpeded.
- v. Where exposed silty soils could erode and enter surface streams or ditches connected to streams, silt fences, hay bales or erosion blankets will be applied as needed for temporary protection.
- 4) Cutblock B 15 is within Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gages should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

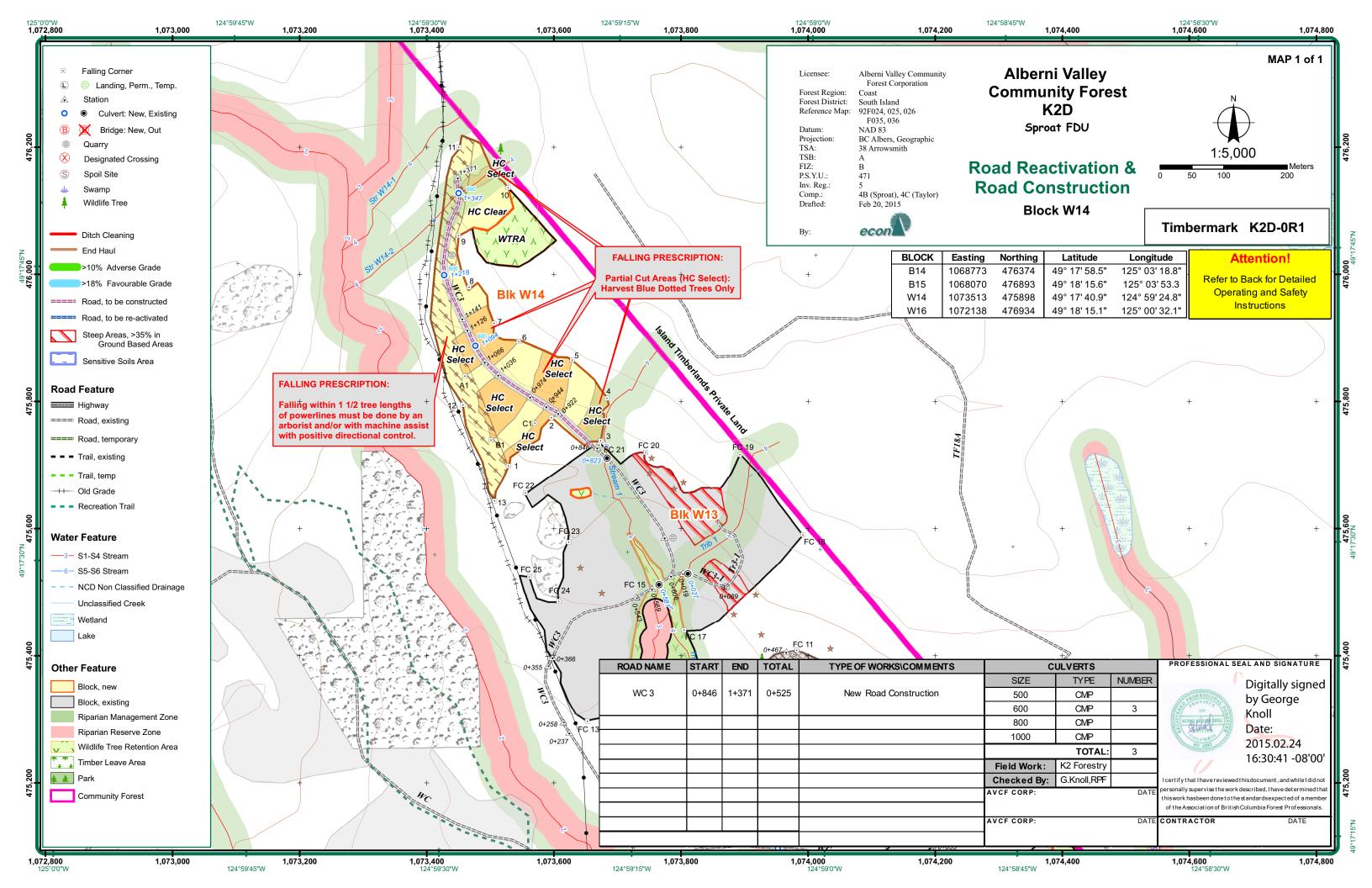
FIRST NATIONS 1) This cuthlock is

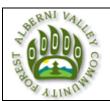
1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural feature.

FALLING of SNAGS and DANGER TREES

- 1) In accordance with the WCB Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.
- 2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WCB regulations.
- 3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS


- 1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.
- 2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter


ROAD CONSTRUCTION PRESCRIPTIONS

- 1) R/W clearing widths to be 20 meters unless a larger width is required for safety or otherwise prescribed.
- 2) Prior approval must be obtained from AVCF if falling beyond right-of-way clearing is required for spoil sites or quarries.
- 3) Proposed cross-drain culvert locations are approximate. Site specific installation to within ±25m is acceptable. Installation beyond this distance constitutes a 'change of plan' and requires prior approval from AVCF.
- 4) Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland. Do not park any equipment within an RMA overnight.
- **5)** Ensure that licensed water works are notified of road activities 48 hours prior to activity.
- **6) RMA distances:** STREAMS: S1 70 meters, S2 50 meters, S3 40 meters, S4 30 meters, S5 30 meters, S6 20 meters, LAKES: L1 10 meters, L3 30 meters, WETLANDS: W1, W5 50 meters, W3 30 meters.
- 7) Avoid quarry locations within the RMA of any stream; where avoidance is not practical, quarries may be located within the RMA of a S6 stream if no impacts (i.e. increased sedimentation) will occur to the stream. All other streams (i.e. S1 to S5) require prior approval from AVCF before a quarry may be located within its RMA. Do not deck or process wood within RMA's.

SAFETY

Road and in-block safety hazards associated with block B15 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

ROAD INSTRUCTIONS – OPENING # W14

ACCESS ROAD: WC3 ROAD PERMIT: R18553 TIMBERMARK: K2D 0R1

ROAD CONSTRUCTION SUMMARY

Road Name	Start	End Station	Type of Works/Comments
	Station		
WC 3	0+846	1+371	New Construction

STREAM CROSSINGS and CULVERT INSTALLATIONS

Road Name	Station	Riparian ID	Riparian Class	Debris Transport Potential	Culvert/ Bridge Size	Designed Peak Flow	Special instructions for operations within or adjacent to RMA			
WC 3	1+094	-	-	-	600	X-Drain				
WC 3	1+218	-	-	-	600	X-Drain				
WC 3	1+347	W14-2	S4	Low	600	X-Drain	OPENING W14 LIES WITHIN THE SPROAT LAKE COMMUNITY WATERSHED.			
							ALL STREAM CROSSINGS ARE TO BE ARMORED WITH COARSE ROCK MATERIAL TO MINIMIZE THE TRANSPORT OF FINES DOWN STREAM.			
							WATERIAL TO WINNING THE TRANSPORT OF TIMES DOWN STREAM.			

EMPLOYEE REQUIREMENTS

- 1) All employees, supervisors and contractors associated with these Road Instructions shall be fully advised of its contents and requirements.
- 2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) Cutblock W14 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible, follow the listed SOP's below:
- a.Ditch Cleaning: where needed, ditches are to be cleaned when conditions are dry. Ditchspoil is not to be windrowed along the road shoulder. On moderate slopes, the ditchspoil could be thinly spread on the slope below the road, but not heaped or piled against trees. Where the road is on steep slopes, the ditchspoil should be endhauled to a suitable spoil site.
- b. Culvert replacement: Where required culvert replacements are to be done during dry weather (except for emergency repairs or replacements). The inlet and outlet areas on new culverts, and the adjacent fill slopes, are to be armoured to prevent erosion or sloughing into the creek.
- c. Rock Ballasting of road surface: For new road construction, where the road is close to a stream channel, the road surface is to be ballasted with clean rock. The road surface is also to be rock ballasted for 30 metres either side of stream culverts.
- d. Road grading practices: grading is to be avoided during heavy rain. e. Shutdown or harvest completion: In preparation for a shutdown for a period longer than 30 days or at a harvest completion, the following measures will be taken:
- i. No excavated or endhauled material will be left piled in such a way as to become unstable during the shutdown period. Spoil sites, piles and fills willbe sloped uniformly to prevent instability.
- ii. Ditches and culverts will be left clear and functional, with adequate inlet basins to minimize the potential for plugging.
- iii. On sections of steep grades, cross ditches and back-up swales will be constructed where needed to minimize ditch erosion.
- iv. If road construction has reached a drainage course but a drainage structure has not been installed prior to shutdown, the drainage course will be left open and unimpeded.
- v. Where exposed silty soils could erode and enter surface streams or ditches connected to streams, silt fences, hay bales or erosion blankets will be applied as needed for temporary protection.
- 4) Cutblock W14 is withina Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gages should be used and monitored daily.

Start-Up Criteria: Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

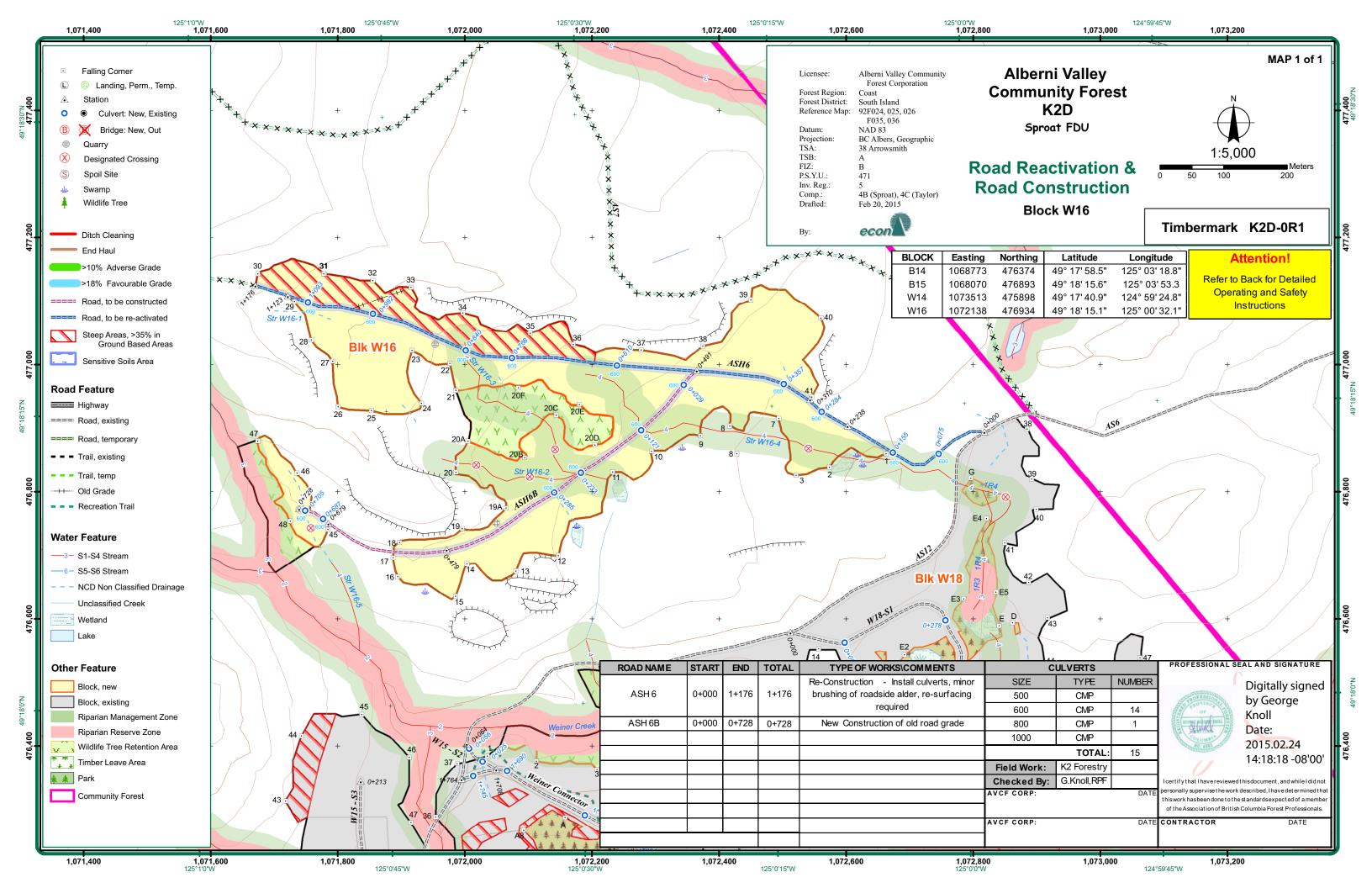
1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest. **FIRST NATIONS**

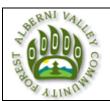
1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural feature.

FALLING of SNAGS and DANGER TREES

- 1) In accordance with WSBC Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. EXCEPT FOR AREAS ADJACENT TO ITLP PROPERTY FROM FC 10 TO 11. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.
- 2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WSBC regulations.
- 3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

CUTBLOCK BOUNDARY TREATMENTS


- 1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.
- 2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter


ROAD CONSTRUCTION PRESCRIPTIONS

- 1) R/W clearing widths to be 20 meters unless a larger width is required for safety or otherwise prescribed.
- 2) Prior approval must be obtained from AVCF if falling beyond right-of-way clearing is required for spoil sites or quarries.
- 3) Proposed cross-drain culvert locations are approximate. Site specific installation to within ±25m is acceptable. Installation beyond this distance constitutes a 'change of plan' and requires prior approval from AVCF.
- 4) Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland. Do not park any equipment within an RMA overnight.
- 5) Ensure that licensed water works are notified of road activities 48 hours prior to activity.
- 6) RMA distances: STREAMS: S1 70 meters, S2 50 meters, S3 40 meters, S4 30 meters, S5 30 meters, S6 20 meters, LAKES: L1 10 meters, L3 30 meters, WETLANDS: W1, W5 – 50meters, W3 – 30 meters.
- 7) Avoid quarry locations within the RMA of any stream; where avoidance is not practical, quarries may be located within the RMA of a S6 stream if no impacts (i.e. increased sedimentation) will occur to the stream. All other streams (i.e. S1 to S5) require prior approval from AVCF before a quarry may be located within its RMA. Do not deck or process wood within RMA's.

SAFETY

Road and in-block safety hazards associated with block W14 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

ROAD INSTRUCTIONS - OPENING # W16

ACCESS ROAD: ASH 6 ROAD PERMIT: R18553 TIMBERMARK: K2D 0R1

ROAD CONSTRUCTION SUMMARY

Road Name	Start Station	End Station	Type of Works/Comments
ASH 6	0+000	1+176	Re-construction. Install culverts, widening of roadside timber, re-surfacing with shotrock ballast.
ASH 6B	0+000	0+728	New construction.

STREAM CROSSINGS and CULVERT INSTALLATIONS

Road	Station	Riparian	Riparian	Culvert/	Designed	Road	Station	Riparian	Riparian	Culvert/	Designed	
Name		ID	Class	Bridge Size	Peak Flow	Name		ID	Class	Bridge Size	Peak Flow	
ASH 6	0+075	-	-	600	X-Drain	ASH 6B	0+029	-	-	600	X-Drain	
ASH 6	0+155	-	-	600	X-Drain	ASH 6B	0+121	16-4	S4	600	Q100	
ASH 6	0+284	-	-	600	X-Drain	ASH 6B	0+233	16-3	S4	600	Q100	
ASH 6	0+357	NCD	NCD	600	Q100	ASH 6B	0+285	NCD	NCD	600	Q100	
ASH 6	0+610	-	-	600	X-Drain	ASH 6B	0+687	-	-	600	X-Drain	
ASH 6	0+768	-	-	600	X-Drain	ASH 6B	0+705	16-5	NCD	600	Q100	
ASH 6	0+840	16-3	S4	800	Q100	Special instructions for operations within or adjacent to RMA						
ASH 6	0+992	-	-	600	X-Drain	OPENING W16 LIES WITHIN THE SPROAT LAKE COMMUNITY WATERSHED. ALL STREAM CROSSINGS ARE TO BE ARMORED WITH COARSE ROCK MATERIAL TO MINIMIZE THE TRANSPORT OF FINES DOWN STREAM.						
ASH 6	1+093	-	-	600	X-Drain							

EMPLOYEE REQUIREMENTS

- 1) All employees, supervisors and contractors associated with these Road Instructions shall be fully advised of its contents and requirements.
- 2) All litter including cable, oil buckets, grease tubes, newspapers and lunch garbage is to be removed from the site and disposed of appropriately.

WATER QUALITY

- 1) The overall objective of this cutblock is timber harvesting without impacting water quality.
- 2) Cutblock W16 lies within the Sproat Lake Community Watershed, sedimentation into streams is to be minimized to the fullest extent possible, follow the listed SOP's below:

 a.Ditch Cleaning: where needed, ditches are to be cleaned when conditions are dry. Ditchspoil is not to be windrowed along the road shoulder. On moderate slopes, the
- ditchspoil could be thinly spread on the slope below the road, but not heaped or piled against trees. Where the road is on steep slopes, the ditchspoil should be endhauled to a suitable spoil site.
- b. Culvert replacement: Where required culvert replacements are to be done during dry weather (except for emergency repairs or replacements). The inlet and outlet areas on new culverts, and the adjacent fill slopes, are to be armoured to prevent erosion or sloughing into the creek.

 c. Rock Ballasting of road surface: For new road construction, where the road is close to a stream channel, the road surface is to be ballasted with clean rock. The road surface is
- also to be rock ballasted for 30 metres either side of stream culverts.

 d. Road grading practices: grading is to be avoided during heavy rain. e. Shutdown or harvest completion: In preparation for a shutdown for a period longer than 30 days or at a
- harvest completion, the following measures will be taken:

 i. No excavated or endhauled material will be left piled in such a way as to become unstable duringthe shutdown period. Spoil sites, piles and fills willbe sloped uniformly to
- prevent instability.

 ii. Ditches and culverts will be left clear and functional, with adequate inlet basins to minimize the potential for plugging.
- iii. On sections of steep grades, cross ditches and back-up swales will be constructed where needed to minimize ditch erosion.
- iv. If road construction has reached a drainage course but a drainage structure has not been installed prior to shutdown, the drainage course will be left open and unimpeded.
- v. Where exposed silty soils could erode and enter surface streams or ditches connected to streams, silt fences, hay bales or erosion blankets will be applied as needed for temporary protection.
- 4) Cutblock W16 is withina Rainfall Shutdown Area with the following shutdown/start-up Criteria:
- Shutdown Criteria: Activities must shut down if: The total rainfall reaches 75mm in 24 hours. Onsite rain gages should be used and monitored daily.
- **Start-Up Criteria:** Activities may start-up when: The total rainfall is equal to or less than 30mm in 24 hours, or the water balance falls below 75mm. Soil drainage rate is 40mm in 24hrs. Refer to the Return to work guide in the tender document for more information.

FORESTRY

1) Invasive Plants: Broom occurs along sections of the high way on route to the setting. Follow FSP measures for invasive plants. Cut and remove plants in association with road reactivation, clean machinery as required. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

FIRST NATIONS

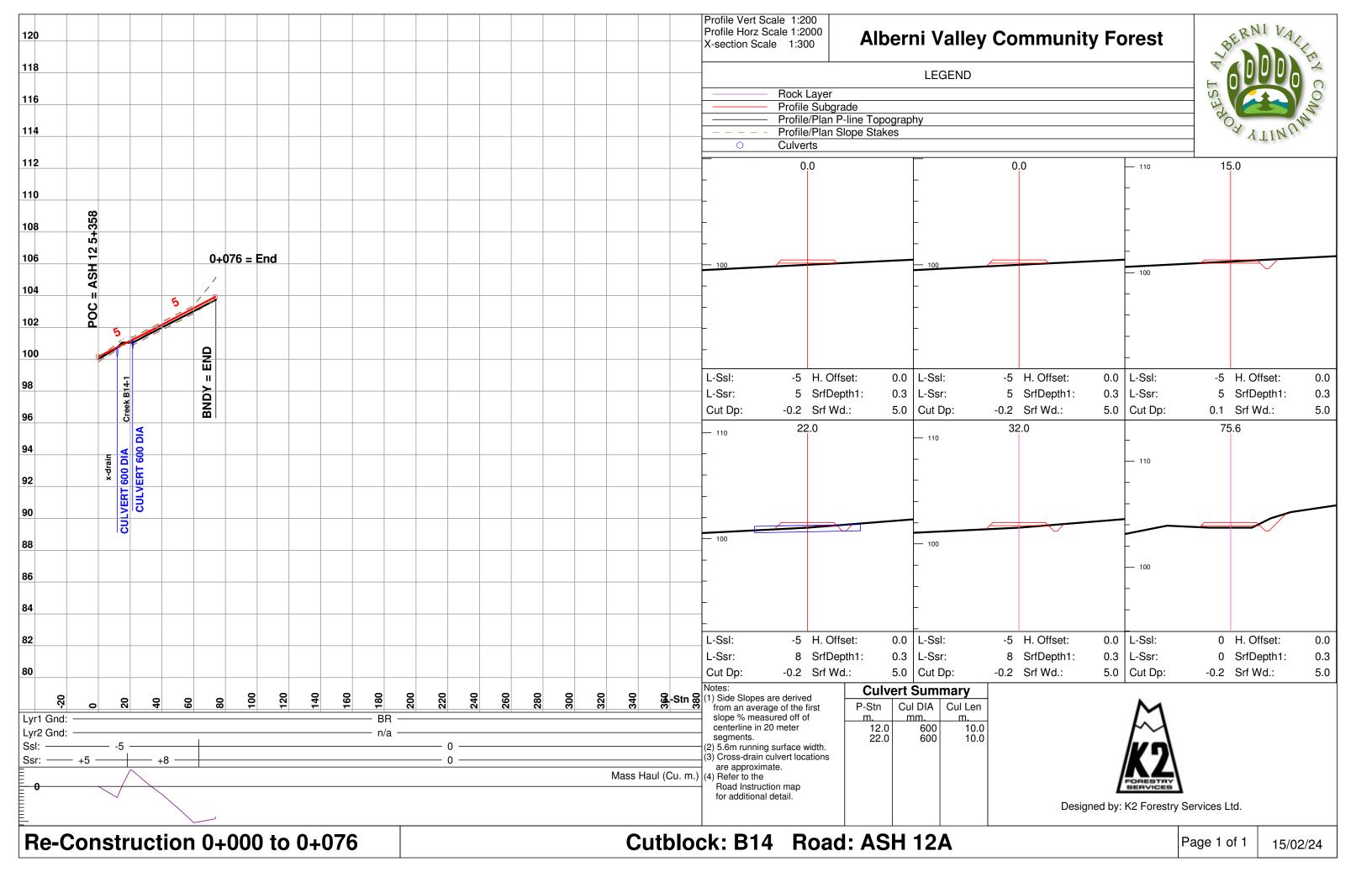
1) This cutblock is in the Hupacusath traditional territory. If any additional potential culturally modified tree (CMT) (whether live or dead and standing or fallen) or any other cultural feature is encountered within the opening during any harvesting phase, operations will cease in the immediate vicinity of the CMT or cultural feature. Hupacusath First Nations is to be notified immediately upon discovery of any potential CMT or cultural feature.

FALLING of SNAGS and DANGER TREES

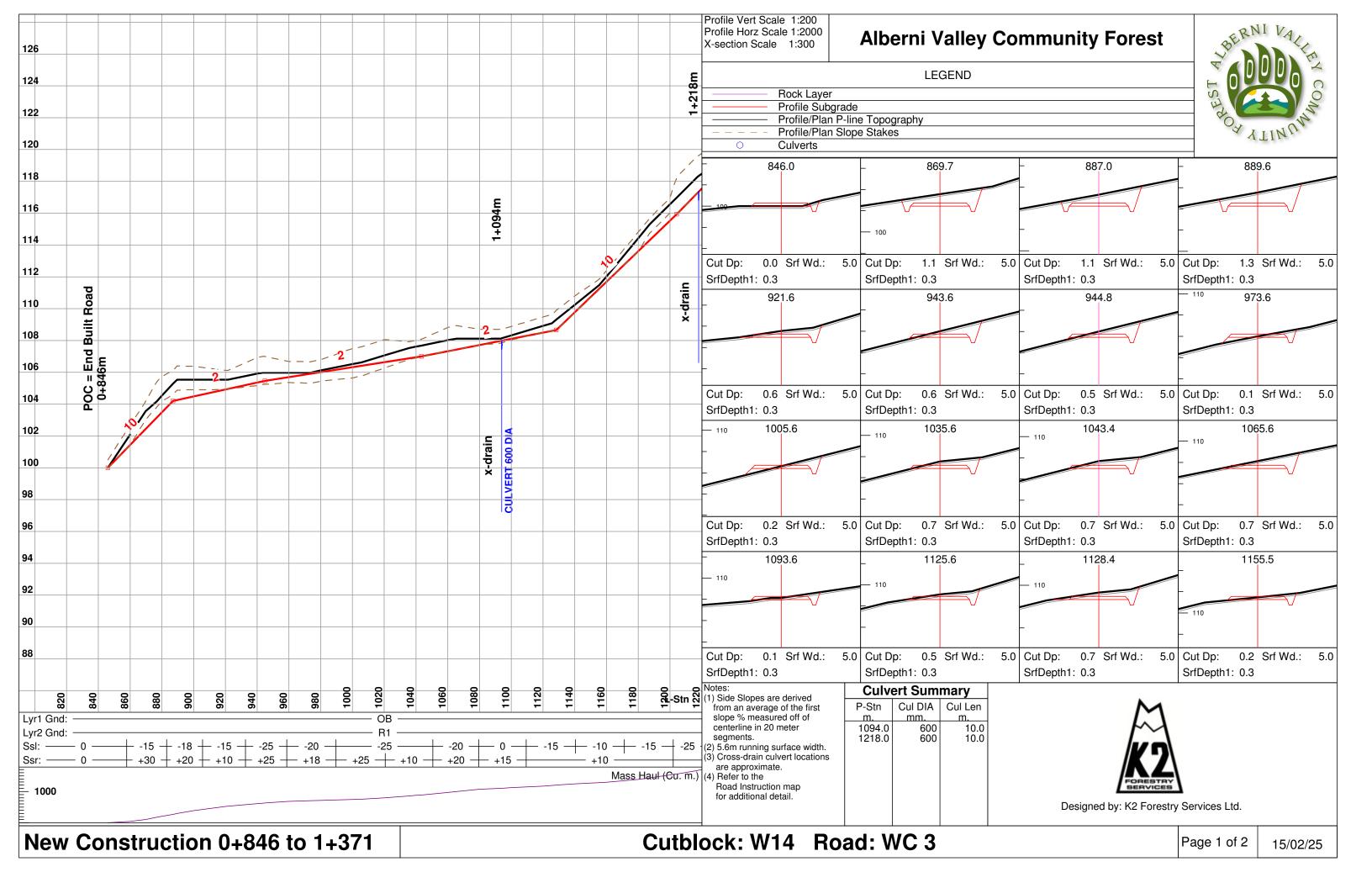
- 1) In accordance with the WCB Regulations, snags and danger trees within the cutblock and outside the cutblock boundaries for a distance of not more than 50 meters that endanger workers are approved for falling under the logging plan for this cutblock. Danger trees and snags outside this 50 meter hazard area that are required to be felled should be recorded on a map for future reference. Sanitation falling will proceed if the occasional stem is required to be removed along the cutblock boundary. The Ministry of Forests will be notified if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Snags and danger trees meeting utilization specifications will be recovered.
- 2) If a bear den or raptor nest is encountered during falling operations, the tree will be reserved from falling along with a protection patch of timber surrounding it. AVCF is to be notified immediately. If the bear den tree is partially cut operations will proceed in conformance with WCB regulations.
- 3) Wildlife Tree Patches or Wildlife Tree Retention Areas have been established, and are marked on the 1:5000 map. Any danger trees felled within the WTP or WTRA will be left as Coarse Woody Debris.

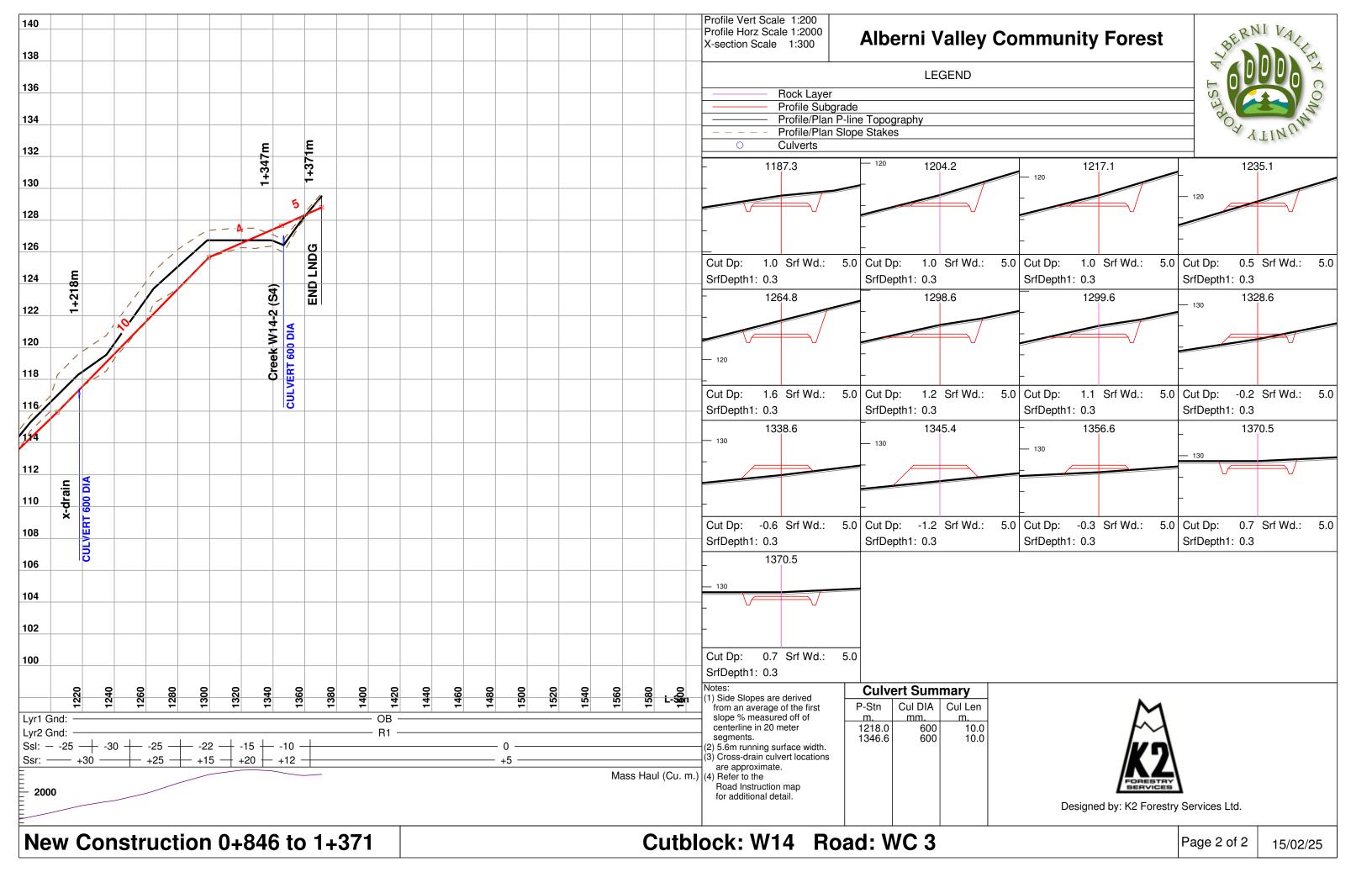
CUTBLOCK BOUNDARY TREATMENTS

- 1) All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees adjacent to edges that cannot be felled into the setting will require approval from AVCF prior to falling. AVCF is to be notified immediately.
- 2) Leave trees may be substituted if, for safety reasons, a faller feels it is necessary to do so, but alternate leave trees must be retained and should be well rooted and of the same species and diameter

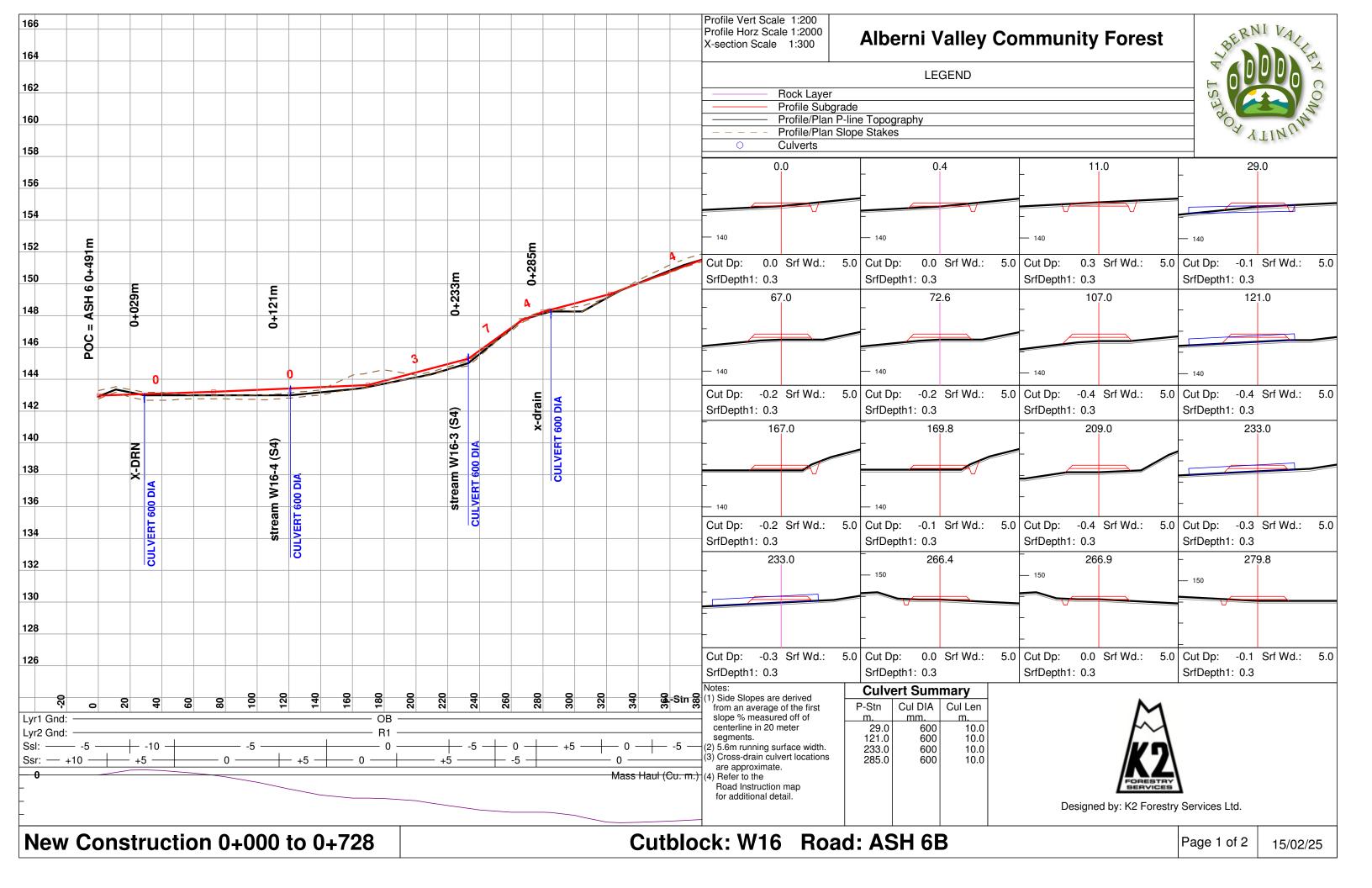

ROAD CONSTRUCTION PRESCRIPTIONS

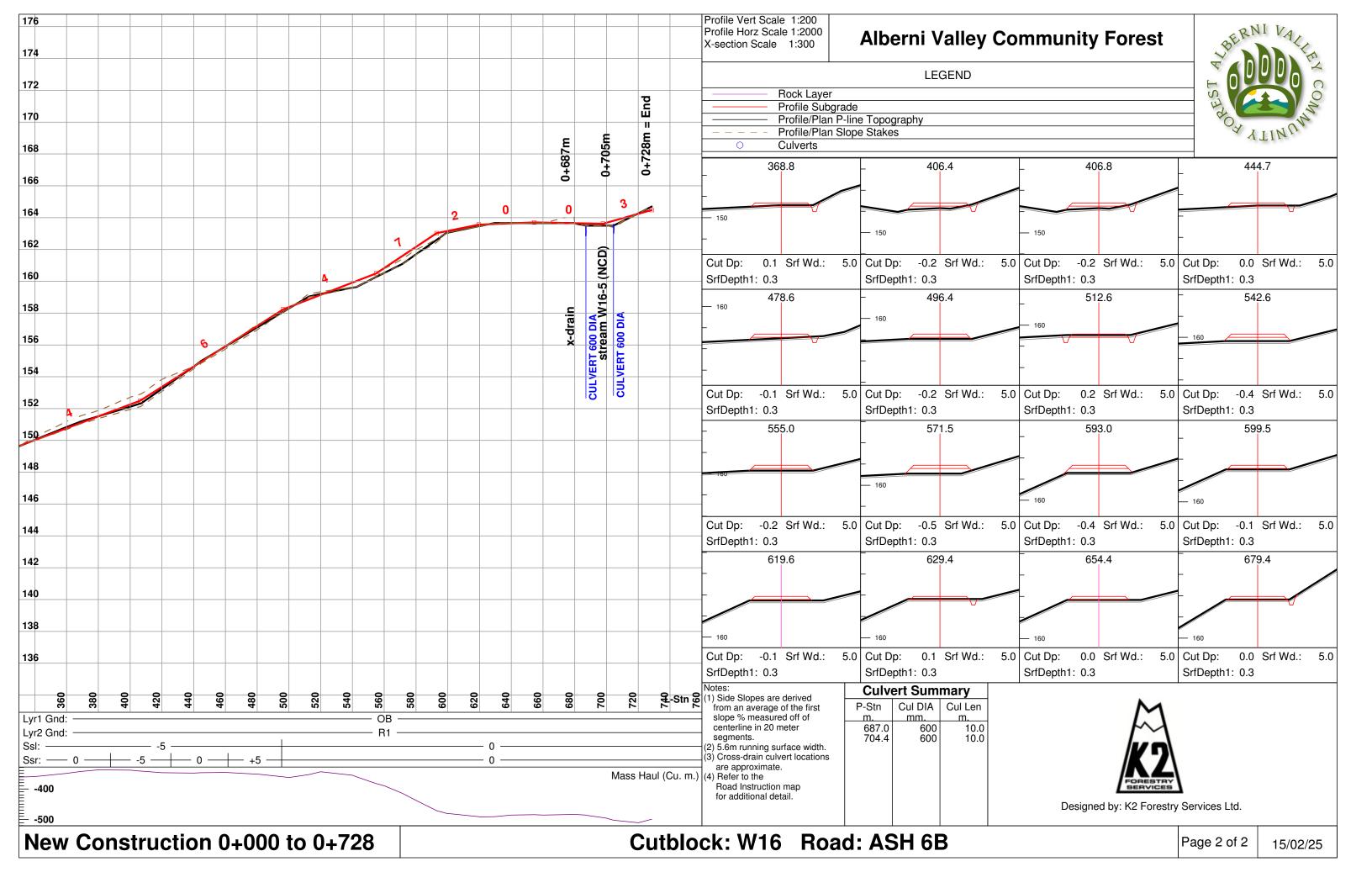
- 1) R/W clearing widths to be 20 meters unless a larger width is required for safety or otherwise prescribed.
- 2) Prior approval must be obtained from AVCF if falling beyond right-of-way clearing is required for spoil sites or quarries.
- **3)** Proposed cross-drain culvert locations are approximate. Site specific installation to within ±25m is acceptable. Installation beyond this distance constitutes a 'change of plan' and requires prior approval from AVCF.
- 4) Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland. Do not park any equipment within an RMA overnight.
- 5) Ensure that licensed water works are notified of road activities 48 hours prior to activity.
- 6) RMA distances: STREAMS: S1 70 meters, S2 50 meters, S3 40 meters, S4 30 meters, S5 30 meters, S6 20 meters, LAKES: L1 10 meters, L3 30 meters, WETLANDS: W1, W5 50 meters, W3 30 meters.
- 7) Avoid quarry locations within the RMA of any stream; where avoidance is not practical, quarries may be located within the RMA of a S6 stream if no impacts (i.e. increased sedimentation) will occur to the stream. All other streams (i.e. S1 to S5) require prior approval from AVCF before a quarry may be located within its RMA. Do not deck or process wood within RMA's.

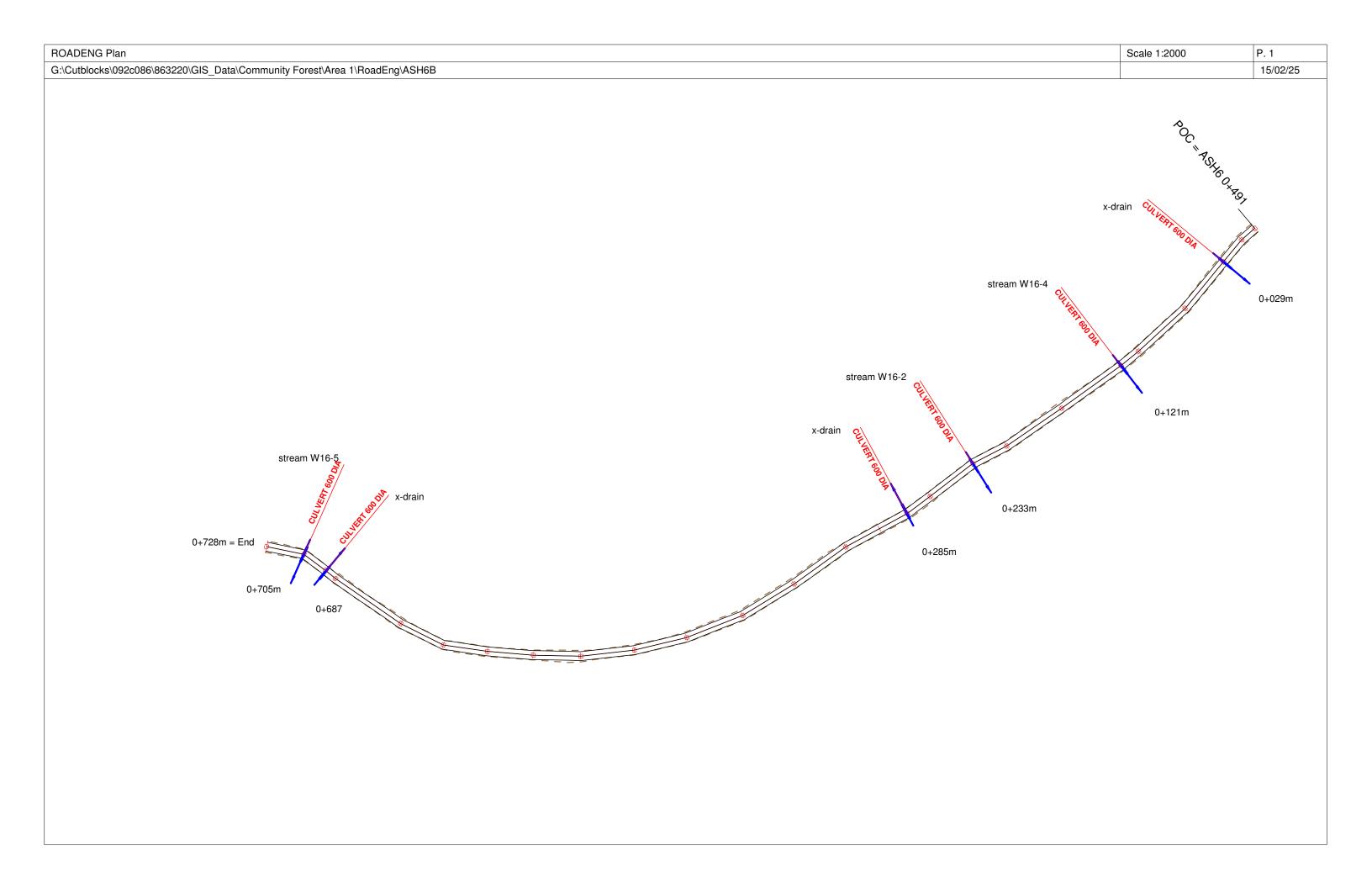

SAFETY


Road and in-block safety hazards associated with block W16 have been identified on the harvest and road instruction maps. In the event additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction or harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to AVCF (using Hazard/Issue Report Form).

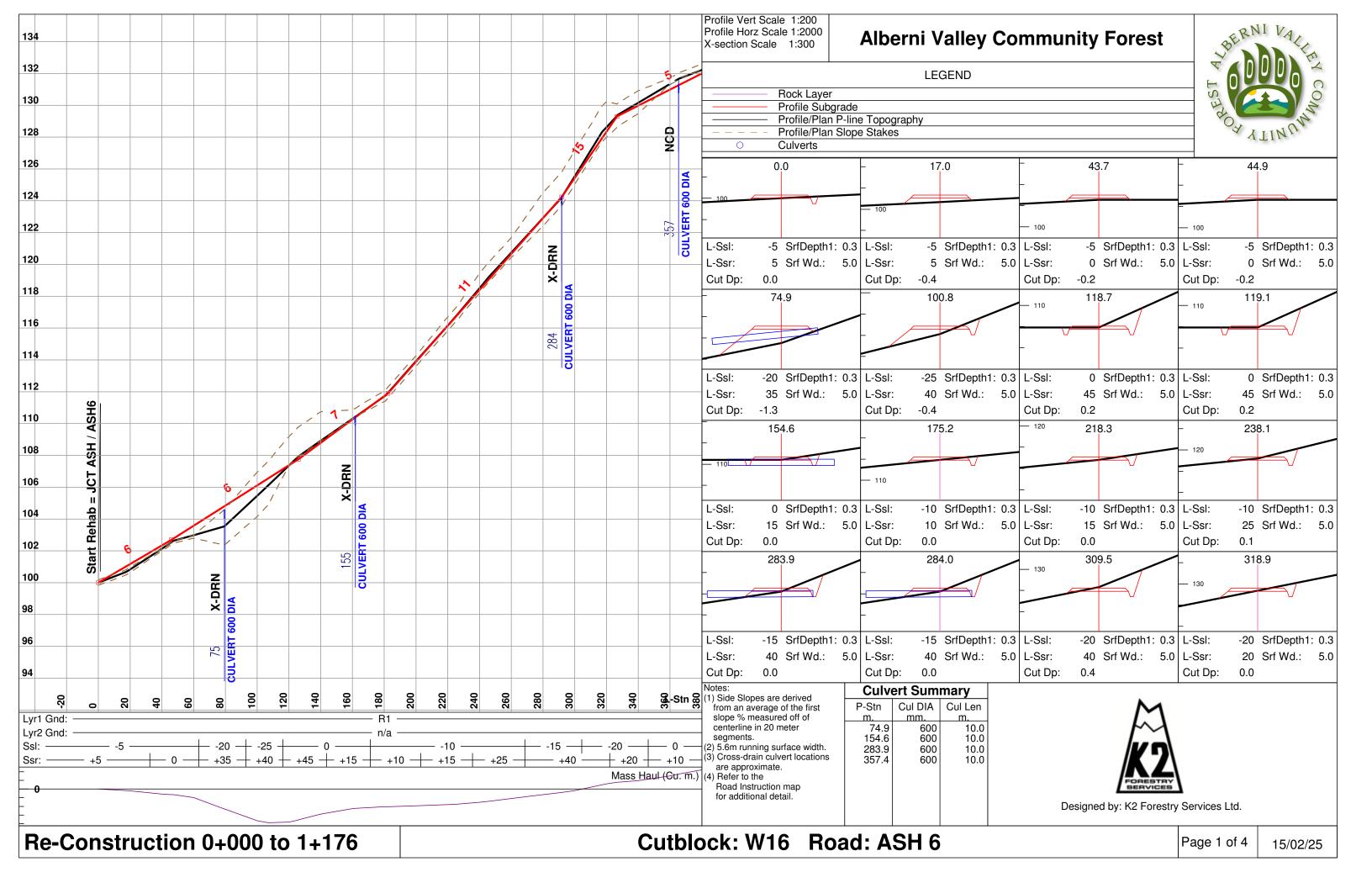
Appendix 4: Road Designs

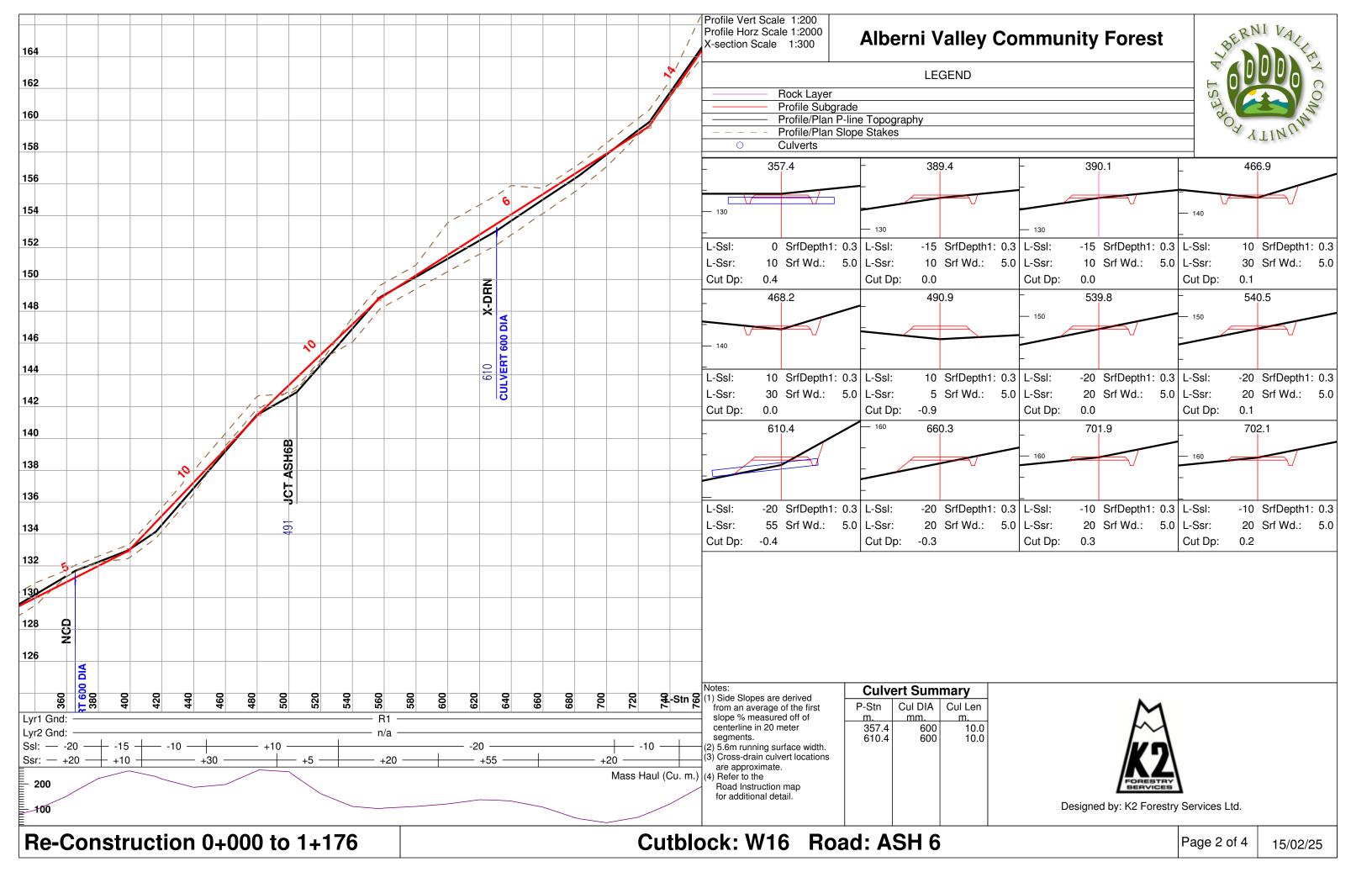


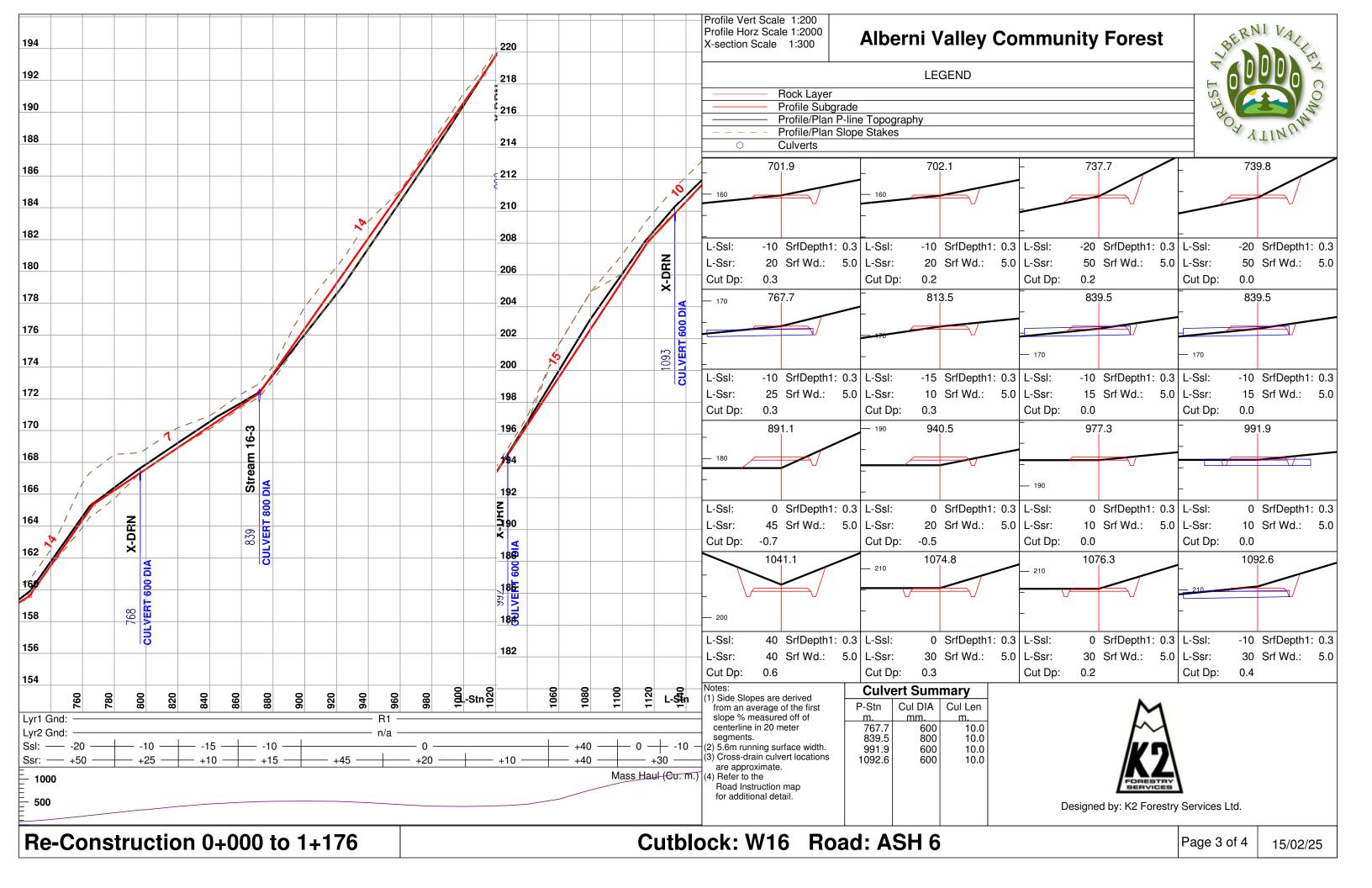


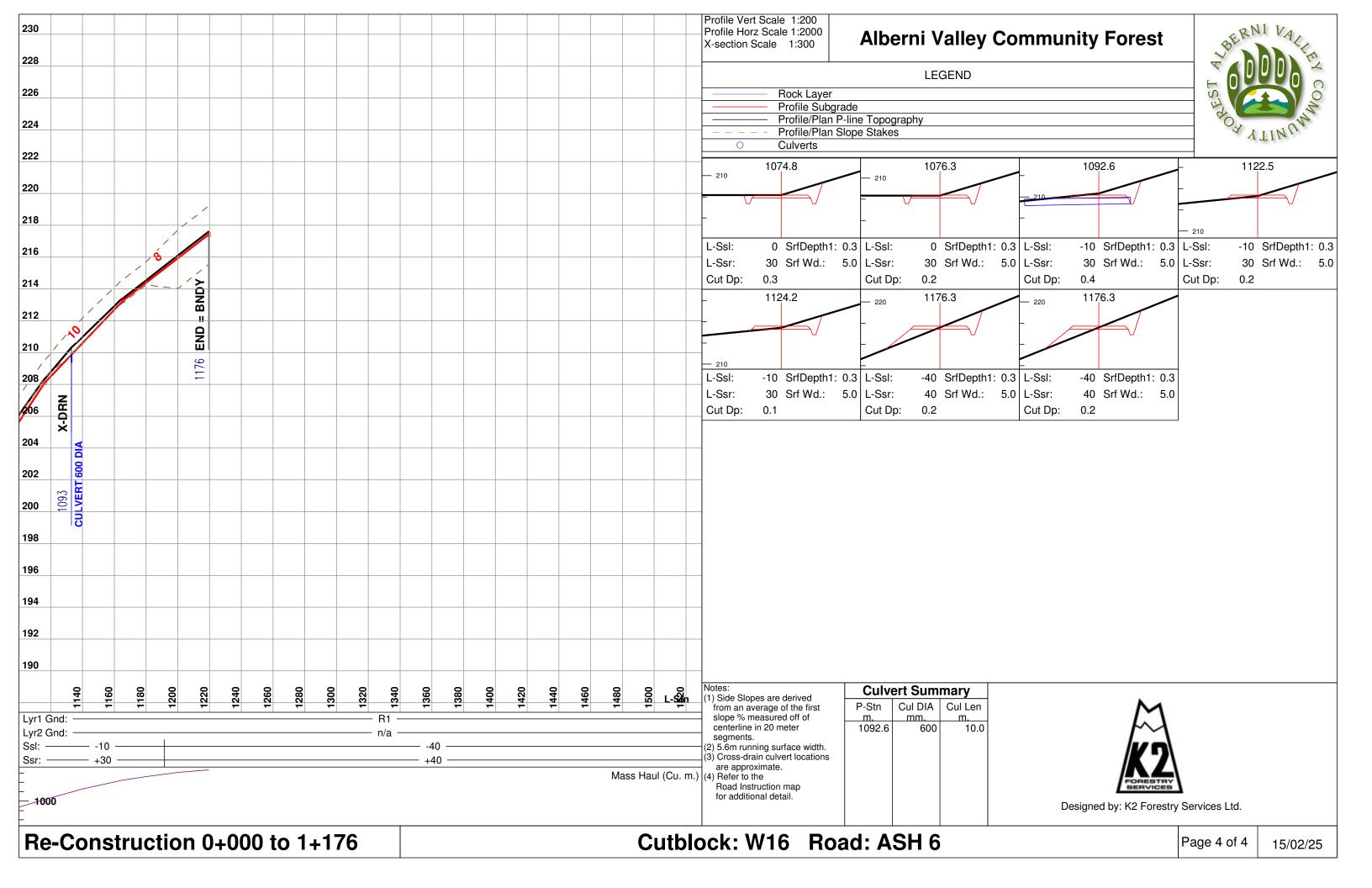


ROADENG Plan	Scale 1:2000	P. 1
G:\Cutblocks\092c086\863220\GIS_Data\Community Forest\Area 2\RdEng\WC3		15/02/25
Spur WC 3 Let 18m L		15/02/25
	POC = End Built Road 0+846m	


Stn Lyr1 Gnd Lyr2 Gnd L-Ssl L-Ssr Bank Ht. L Bank Ht. R SG Cut V. SG Fill V. Cul DIA Mass	ocks/092c086/863	220\GIS_Data\Community	Forest\Area 2\RdFng\MC	}							15/0
846.0 OB R1	P-Stn				L-Ssr			SG Cut V.	SG Fill V.		Mass I
921.6 OB R1 -15 10 -0.3 0.6 98.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	m. 846.0	ОВ	R1	% 0	0		m. 0.0			mm.	Cu. m
921.6 OB R1 -15 10 -0.3 0.6 98.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	869.7	OB	R1	-15	15	0.1	1.2	64.2	0.0		
921.6 OB R1 -15 10 -0.3 0.6 98.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0	876.7	OB	R1	-10	30	0.2	1.7	120.6	0.0		
1005.6 OB R1 -25 25 25 -0.3 0.7 109.5 7.5 109.5	889.6	OB	HI D1	-18	20	0.1	1.6	235.0	0.0		
1005.6 OB R1 -25 25 25 -0.3 0.7 109.5 7.5 109.5	943.6	OB	R1	-15	25	-0.3	1.0	98.7	0.7		
1005.6 OB R1 -25 25 25 -0.3 0.7 109.5 7.5 109.5	973.6	OB	R1	-20	18	-0.5	0.2	89.0	8.8		
1055.6 OB R1 220 20 0.3 0.5 102 7.0 105.6 OB R1 220 20 0.3 1.0 104.0 OA 1093.6 OB R1 0 0 15 02 0.3 1.0 10.0 OA 1093.6 OB R1 0 0 15 02 0.3 1.0 0.2 0.3 1.0 1.0 10.0 OA 1193.6 OB R1 0 0 15 0.3 0.2 0.3 1.0 0.2 0.3 0.3 0.0 0.3 115.5 OB R1 0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1005.6	OB	R1	-25	25	-0.3	0.7	/1.0	21.1		
1085.6 OB R1 -20 20 -0.3 1.0 104.0 04 105.0 08 R1 0 0 15 0.2 0.8 0.0 0.8 0.0 1084.0 OB R1 0 0 15 0.2 0.8 0.0 0.8 0.0 0.0 1084.0 OB R1 1.0 1.0 10 0.3 0.1 98.8 0.2 1145.5 OB R1 1.15 10 0.0 0.0 0.1 143.7 0.0 1143	1035.6	ОВ	R1	-25	10	-0.3	0.5	109.5	7.5		
1093.5 OB H1 O 15 O.2 0.8 0.0 10 10 10 10 11 15 O.3 0.5 0.2 0.4 0.0 11 15 O.3 0.5 0.5 0.0 0.0 11 15 O.3 0.5 0.5 0.0 0.0 11 15 O.3 0.5 0.5 0.5 0.0 0.0 11 15 O.3 0.5 0.5 0.5 0.0 0.0 11 15 O.3 0.5 0.5 0.5 0.5 0.0 0.0 11 15 O.3 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0	1065.6	OB	R1	-20	20	-0.3	1.0	104.0	0.0		
1125.6 OB	1093.6	OB	K1		15		0.2	0.8	0.0	000	
11855 OB R1 -10 10 -0.3 01 98.8 0.2 11873 OB R1 -15 10 0.0 0.9 143.7 0.0 1217.1 OB R1 -25 30 -0.3 1.8 7.3 0.0 1217.1 OB R1 -25 30 -0.3 1.7 7.3 0.0 1235.1 OB R1 -25 25 0.2 2.1 1264.8 OB R1 -25 0.2 0.1 1298.6 OB R1 -22 15 -0.3 1.3 1.5 126.7 0.0 1298.6 OB R1 -15 20 0.0 1238.6 OB R1 -10 12 0.0 0.0 55.3 1338.6 OB R1 -10 12 0.0 0.0 55.3 0.0 1356.5 OB R1 -10 10 12 0.0 0.0 55.3 136.5 OB R1 -5 7 0.2 0.4 1370.5 OB	1125.6	OB	RI	-15	10	-n 3	0.2	84.9	0.3	600	
11873	1155.5	OB	R1	-10	10	-0.3	0.5	98.8	0.2		
1217.1 OB R1 -25 30 -0.3 1.8 258.6 U.0 1218.0 OB R1 -25 30 -0.3 1.7 7.3 0.0 600 1225.1 OB R1 -30 30 -0.3 1.1 105.9 2.7 1218.4 OB R1 -25 25 0.2 2.1 248.7 2.1 1298.6 OB R1 -22 15 -0.3 1.3 370.5 0.0 1338.6 OB R1 -15 20 1338.6 OB R1 -10 12 12 136.6 OB R1 -10 10 10 135.6 OB R1 -5 7 1356.6 OB R1 -5 7 0.2 0.4 32.8 7.3	1187.3	OB	R1	-15	10	0.0	0.9	143.7	0.0		
1218.0 OB R1 -25 30 -0.3 1.7 106.0 2.7 600 1235.1 OB R1 -25 25 25 0.2 2.1 248.7 2.1 1294.6 OB R1 -22 15 -0.3 1.3 1.2 1294.6 OB R1 -15 20 1338.6 OB R1 -10 12 12 0.0 51.4 1346.6 OB R1 -10 10 10 1356.6 OB R1 -5 7 0.2 0.4 1370.5 O	1217.1	ОВ	R1	-25	30	-0.3	1.8	238.6	0.0		
1235.1 OB R1 -30 30 -0.3 1.1 248.7 2.1 1264.8 OB R1 -25 25 25 0.2 2.1 370.5 0.0 1298.6 OB R1 -15 20 31338.6 OB R1 -10 12 338.6 OB R1 -10 10 10 1356.6 OB R1 -5 7 0.2 0.4 32.8 7.3	1218.0	ОВ	R1	-25	30	-0.3	1.7	105.9	2.7	600	
1296.6 OB R1 -22 15 -0.3 1.3 170.5 0.0 10 122.6 OB R1 -15 20 1338.6 OB R1 -10 12 10 1346.6 OB R1 -10 10 10 1356.6 OB R1 -5 7 0.0 0.0 55.3 1370.5 OB R1 -5 7 0.0 0.0 55.3 1370.5 OB R1 -5 7 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 55.3 0.0 0.0 0.0 0.0 55.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1235.1	OB	R1	-30	30	-0.3	1.1	248 7	2.7		
1328.6 OB R1 -15 20 0.0 4.6 225 1338.6 OB R1 -10 110 10 10 1356.6 OB R1 0 5 0.2 0.4 32.8 7.3	1264.8	OB	R1	-25	25	0.2	2.1	370.5	0.0		
1328.6 OB R1 -10 12 0.0 51.4 1346.6 OB R1 -5 7 0.2 0.4 32.8 7.3	1298.6	OB	H1	-22	15	-0.3	1.3	126.7	9.0		
1346.6 OB R1 -10 10 10 10 10 10 10 10 10 10 10 10 10 1	1326.6	OB	R1	-10	12		0.0	4.6	26.5		
1356.6 OB R1 -5 7 1370.5 OB R1 0 5 0.2 0.4	1346.6	OB	R1	-10				0.0	51.4	600	
1370.5 OB R1 0 5 0.2 0.4 32.6 7.3	1356.6	OB	R1	-5	7			0.0	55.3		
	1370.5	OB	R1	0	5	0.2	0.4	52.0	7.5		







IG Data		:-	21.05							P. 1
ocks\092c086\863 P-Stn	220\GIS_Data\Community Lyr1 Gnd	/ Forest\Area 1\RoadEng\AS Lyr2 Gnd		I Cor	Bank Ht. L	Bank Ht. R	SC Cut V	SG Fill V.	Cul DIA	15/02/
m.		•	L-Ssl %	L-Ssr %	m.	m.	SG Cut V. Cu. m.	Cu. m.	mm.	Mass H. Cu. m.
0.0 11.0	OB OB	R1	-5	10 5	0.0	-0.2 0.0	19.5	1.9		
11.0	OB	R1 R1	-5 -10	5	-0.3	-0.4	24.7 6.4 0.0 0.0	4.2 40.2 77.9	600	
29.0 67.0	OB OB	R1	-10 -5	0		-0.4	6.4	40.2	000	
107.0	OB	R1	-5	0			0.0	77.9		
121.0	OB	R1	-5	5			10.8	35.6 78.8	600	
167.0	OB OB OB OB OB OB OB OB	R1	0	0		0.1	10.8 15.6	76.8 51.0		
209.0	OB	R1	0	5			0.0	51.0 41.7	000	
233.0	OB	R1 R1	-5 0	5 -5	-0.4		1.1	30.1	600	
266.9 284.8	OB	R1	5	0	-0.4		1.1 5.6 2.3 0.0 19.5	30.1 6.2 40.0	600	
304.8 328.8 368.8	OB	R1	0	0			2.3	40.0		
328.8	OB	R1	0	0			19.5	0.9		
368.8	OB	R1	-5	0		-0.1	18.8	17.7		
406.8 444.7	OB	R1 R1	-5 -5	-5 0		-0.2 -0.5	18.8 17.0	21.9		
478.6	OB	R1	-5 -5	5		-0.5	6.3 14.8	10.3		
512.6	OB	R1	ő	0	-0.3	-0.4 -0.2	14.8	17.3		
512.6 542.6	ОВ	R1	0	0			16.3	23.7		
571.5 599.5 629.4 679.4	OB	R1	0	0			16.3 0.0 0.0 3.0	54.0 65.2 13.3		
599.5	OB	R1	0	0		0.4	3.0	13.3		
629.4 679.4	OB OB	R1 R1	0	0		-0.4 -0.1	11.7	4.4		
687.0	OB	R1	0	0		-0.1	0.1	2.7	600	
687.4	OB OB OB	R1 R1	0	0			11.7 0.1 0.0 0.0	0.3 15.9		
704.4 728.4	OB	R1 R1	0	0	-0.3	-0.3	17.1	14.1	600	

Appendix 5: Site Plans and Site Plan maps

CUTBLOCK IDENTIFICATION						
Licence: K2D/AVCF	Cutting Permit: 7	Block: B14	Timber Mark K2D 007	FDU: A (Sproat)		
Silviculture System: Clearcut	Opening Number: 92F.025	Location: Sproat Lake	Lattitude: 49° 17' 56"	Longitude: 125°03' 16"		
TAUP(ha): 21.7	NAR (ha): 15.3	NP NAT (ha): 4.4	NP UNN (ha /%): 2.0/9.3%	P.A.S. Limit (%): 7%		

Road Name	Section	Length	Location
AS 12A	0+000 to 0+076 Re-Construction	76 m	125°3'26"W // 49°17'58"N
AS 12B	0+000 to 0+232 Re-construction	232m	125°3'26"W // 49°18'01"N

	,	SOIL DISTURBANCE		
SU	Compaction	Displacement	Surface Erosion	Soil Disturbance Limit (%)
Α	Moderate	Moderate	High	5
В	Moderate	Moderate	High	5

COMMENTS

Use puncheon or rubber matting in sensitive areas and **stop work if the following soil disturbances cannot be avoided**:

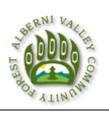
>Wheel/Track Ruts, Compacted Areas, Gouges, Scalps<

Rehabilitate compacted areas and roadsides by de-compacting with hoe (preferably grapple attachment) while avoiding scalps larger than 1.5 x 1.5 m. Grass seed exposed mineral soil within 1 year of completion of harvest. Wide gouge and wide scalp are not countable soil disturbance categories in de-stumping areas.

Maximum Roadside Disturbance Limit: 25%

	RESULTS & STRATEGIES
RESULT OR STRATEGY	HOW THE STRATEGY OR RESULT APPLIES TO THE SITE
5.1.1a Order Establishing Sproat Lake Landscape Unit and Objective – Objective 1: Old Growth Management Areas (OGMAs)	 The proposed harvest area is within the Sproat Lake Landscape Unit. OGMAs have been established for the Sproat Lake Landscape Unit on July 18, 2005. No OGMAS are located beside or close to B14.
5.1.1b Order Establishing Sproat Lake Landscape Unit and Objective – Objective 2: Wildlife Tree Retention (WTR)	 The proposed harvest area is within the Sproat Lake Landscape Unit. A 3.9 ha WTRA has been retained adjacent to the block, meeting the minimum requirements of 7% and 12% as set out in the approved landscape unit plan for areas within the CWH mm and xm BEC subzone. This WTRA contains second growth Fd (Cw) representative of the preharvest stand. AVCF will ensure that the 5 year average of WTR will met the minimum requirements set out in the approved landscape unit plan for areas within the CWH mm BEC subzone by ensuring that each individual block meets this target. AVCF will ensure that the WTR are distributed across the landscape by ensuring that each WTR is directly adjacent to their corresponding cutblock, which is planned to be distributed

AVCF SITE PLAN BLOCK B14 Page 1 of 7


	 across the license area. Permissible activities that may occur for this WTRA include: Removal of danger trees, WTPs with a high likelihood of windthrow may be pruned or topped to maintain the integrity of the WTP.
5.1.1c Order Establishing Sproat Lake Landscape Unit and Objective – Objective 3: Special Management Zone 17 (SMZ 17)	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2a Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1a: Sustain forest ecosystem structure and function in SMZs	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2b Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1b: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2c Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1c: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2d Vancouver Island Land Use Plan Higher Level Plan Order – Objective 2: Recovering damaged timber within SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.2.1 Soils (FPPR s.35-36)	 Soil disturbance limits comply with Section 35 of the FPPR. Limits are listed in SOIL DISTURBANCE section of the Site Plan. Permanent access structures for the development are 9.3%, exceeding the 7% limit set in FPPR S.36. This is due to the size of the block and previously built roads and is not to be considered avoidable site degredation.
5.2.2 Wildlife – MAMU (FPPR s.7)	The Notice specifies the amount, distribution and attributes of wildlife habitat required for Marbled Murrelet and consequently a result or strategy is required. The harvest area is a second growth Douglas fir stand; poor Murrelet habitat.
5.2.3 Water, Fish, Wildlife and Biodiversity within Riparian Areas (FPPR s.47-52)	 For each riparian class of stream found in and adjacent to the harvest area, the minimum riparian management area (RMA) width, riparian reserve zone (RRZ) width and riparian management zone (RMZ) width, on each side of the stream, are as per the table in FPPR 47(4).

AVCF SITE PLAN BLOCK B14 Page 2 of 7

	·
	 All RMA infringements on streams and wetlands are due to stream crossings that cannot be avoided and or there is no other practical option for locating the road FPPR 50(1)(a), FPPR 50(1)(b), FPPR 51(1)(c).
5.2.4 Community Watersheds (FPPR s.8.2)	 The proposed harvest area is within the Sproat Lake Community Watershed. CWAP recommendations have been followed and assessments completed to ensure low to moderate material adverse hydrological effects will occur as a result of forest practices.
5.2.5 Wildlife and Biodiversity – Landscape Level (FPPR s.64-65)	 The net area to be reforested is in accordance with the FPPR Sections 64 (less than 40ha) and 65 (it is not adjacent an existing cutblock).
5.2.6 Wildlife and Biodiversity – Stand Level (FPPR s.66-67)	 Wildlife tree retention targets are in accordance with the results or strategy for the approved Sproat Lake Landscape Unit Plan Objective 2. (FSP s. 5.1.1b) No signs of bear dens were observed during field work.
5.2.7 Cultural Heritage Resources (FPPR s.10)	 It is the responsibility of the licensee to ensure all First Nations parties with aboriginal title are accommodated. Information sharing with the Hupacasath First Nations has occurred and is being completed by the AVCF manager. If, during harvesting, any evidence of traditional use or cultural heritage values is found within or surrounding the area, notify the AVCF Manager and the Ministry of Forests Aboriginal Liaison Officer and cease work.
5.3.1 Visual Quality Objectives (FPPR s.7 – GAR Order)	 A visual impact assessment (VIA) was completed by ECON Forest Consulting on Feb 24th 2015. This block is located outside of any defined visual resource polygons. The VIA reviewed the potential for viewing from the travel corridors of Highway 4 and Sproat Lake recreation areas. The block is not visible from the viewpoints.

AVCF SITE PLAN BLOCK B14 Page 3 of 7

					STO	CKING STA	NDARDS					
SU	Standards II					m Classification		generation Method	Preferred Sp	ecies	Acc	eptable
		(ha)	Zone	Subzone	Variant	Site Series				Spe		ecies
Α	1037530	10.2	CWH	xm	1	01 ₉₀ 03	10	Plant	Fd			w Cw w ²²
В	1037503	5.1	CWH	mm	1	01 ₁₀₀		Plant	Fd,Cw		łw ¹¹	
(²²) Ri	sk of white pir	ne blister ru	ust. (¹¹)				•			•		
SU	Regen. Date	FG Date Late	Э	MITD	T	SS	MSSp	MSSp		G Ht. by ecies	/	Crop Tree to Brush
	(yrs)	(yrs)		(m)	(s	ph)	(sph)	(sph)	Species	Ht (m)	Ratio %)
Α	3	11		2.0	90	00	500	400	Fd Hw Cw Pw	3.0 2.0 1.5 2.5		150
В	6	11		2.0	90	00	500	400	Fd Hw Cw	3.0 2.0 1.5		150

AVCF SITE PLAN BLOCK B14 Page 4 of 7

CRITICAL FACTORS AND REGENERATION COMMENTS

Harvesting: Block boundaries are established with orange flagging, orange tags, and falling corners. Boundary trees may be harvested when they are adjacent to an existing road or block. All other boundary trees should not be felled or damaged.

This block will be harvested and regenerated using a clearcut silvicultural system with internal and external wildlife tree retention. The block is designed for ground based harvesting. Road access is off an existing road (AS12) and reconstruction of ASH 12A and 12B.

Windthrow: A windthrow assessment was completed by K2 Forestry Services on Feb 20th 2015. Block B14 has been assessed as having a moderate to low windthrow risk. No treatments required. See windthrow plan for further details.

Terrain Stability: It was determined that a terrain stability assessment was not required, this was based on the following rationale:

- Slopes are less than 60% and average 20% within the block;
- No current or previous signs of instability;
- Roads are already constructed and stable

Recreation: The Sproat Lookout Trail Network is located to the East of Bookhout Creek. The trails appear to be active and well maintained. Anticipate high public traffic in the surrounding areas as these roads are high use by Quads, recreational users and hunters. Adequate signs are to be posted to inform the public user groups of active blasting, logging and hauling during operations. Branch AS12 will need to be closed to the public during these activities.

Root Rot: Very minor signs of root rot were noted during the survey. Endemic spot infections may exist but no treatment is prescribed.

Coarse Woody Debris: Retain a minimum of 4 logs/ha each being at least 5m in length and 30 cm in diameter at one end.

Wildlife Tree Retention Areas: WTRA totaling 3.9 ha have been designated for B14. This is equivalent to 17.9% of the total area to be harvested.

Invasive Plants: Broom occurs along sections of the highway and hauling roads on route to B14. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

Natural Range Barriers: Natural range barriers do not apply to the proposed harvest area.

Brush Competition: Expect moderate to heavy brush competition from bracken fern. Monitor and treat brush as required to establish new stand of conifers.

Regeneration: Plant promptly following harvesting to minimize the potential need for future brushing treatments. Focus Cw on water receiving sites.

AVCF SITE PLAN BLOCK B14 Page 5 of 7

Recommended Planting Prescription:

SU	NAR (ha)	Species	Percent (%)	Stock Type	Stems/ha	Total Stems
А	10.2	Fd Cw	90 10	412 or Larger	1080 120	11016 1224
В	5.1	Fd Cw	80 20	412 or Larger	960 240	4896 1224

A more detailed planting prescription is to be completed during the Post-Harvest Assessment.

	RIPARIAN MANAGEMENT										
Riparian Class of Feature	\$4 \$4 \$3 \$2	Designation on Map	B14-1 B14-2 B15-4 Bookhout Creek	Falling and/or Skidding or Yarding Across a Stream	No No No No						

Stream B14-1 and B14-2 are direct tributary's to stream B15-4, an S3 non-fish stream. B15-4 is gullied and greater than 20% gradient below this cutblock.

Stream B14-1 and B14-2 are to be fall away yard away, except where designated crossings are identified on the Harvest Map. Designated crossings are allowed for harvest flexibility and are to be rehabilitated post-harvest.

Retain cedar and non-merchantable stems within the RMZ where operationally practicable.

AVCF SITE PLAN BLOCK B14 Page 6 of 7

	RPF SIG	SNATURE AND SEAL
Prepared By: Signing RPF:	George Knoll Name (Printed) George Knoll RPF Name (Printed)	Digitally signed by George Knoll Date: 2015.02.25
23/02/15 Date Signed (dd/mm/yy)	4582 RPF Number	09:19:24 -08'00' RPF Signature and Seal

"I certify that the work described herein fulfills the standards expected of a member of the Association of British Columbia Forest Professionals and that I did personally supervise the work."

AVCF SITE PLAN BLOCK B14 Page 7 of 7

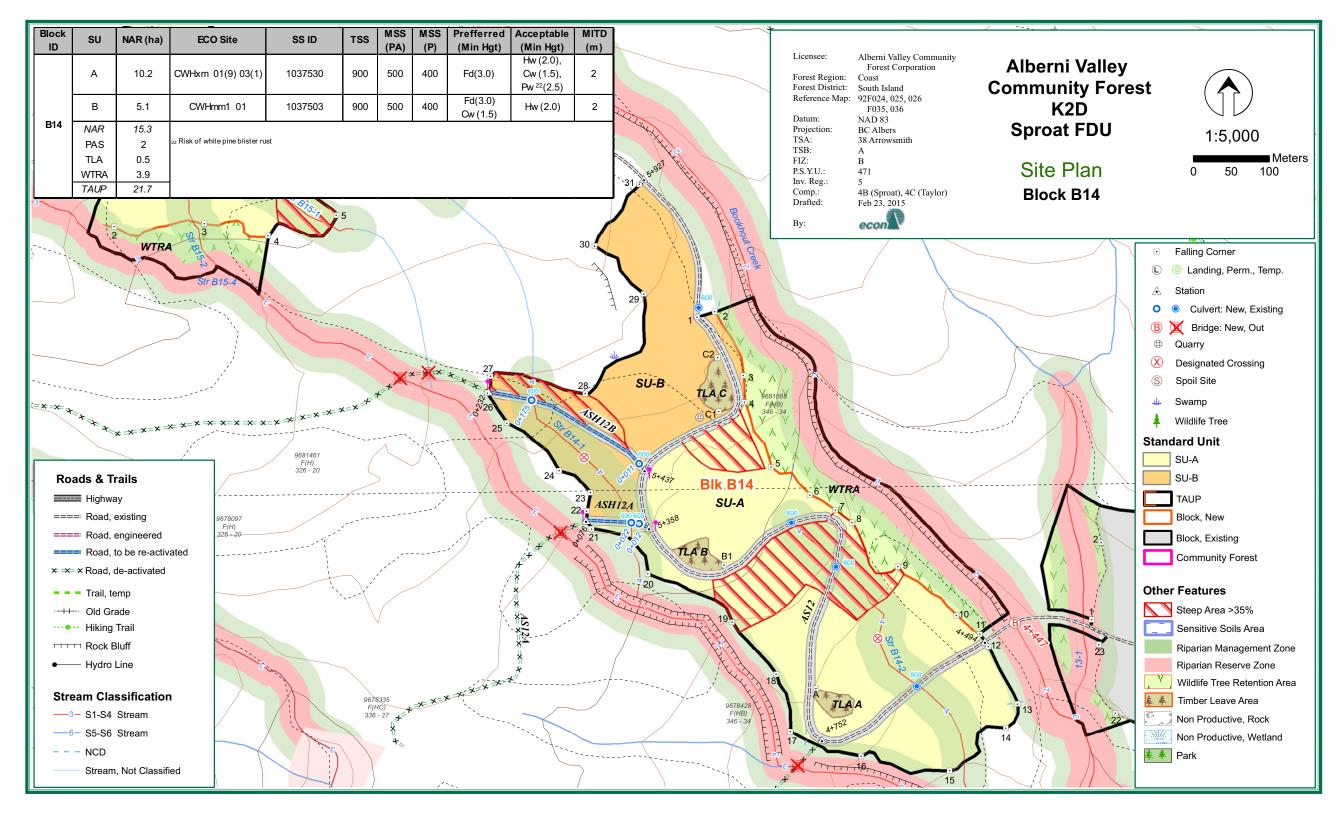
SITE DEGRADATION ESTIMATE

A: DESCRIPTION OF AREA

TENURE	СР	BLOCK	Ha
AVCF	07	B14	21.7

B: Natural Non-Productive

Туре	На
CREEK	0.00
SWAMPS	0.00
SLIDES	0.00
ROCK OPENINGS	0.00
OTHER / RESERVES	4.4
	Total NNP 4.4


C: UNNATURAL NON-PRODUCTIVE (before Rehab.)

Туре	START	END	AMOUNT	LENGTH (M)	SLOPE	WIDTH (M)	На	%
AS 12	4494	5722	1	1228	8	12	1.47	
AS 12	5722	5927	1	205	8	6	.123	
AS 12A	0	76	1	76	8	12	.0912	
AS 12B	0	232	1	232	8	12	.278	
Totals	•						2.0	9.3

D: SUMMARY

٠.	· · · · · · · · · · · · · · · · · · ·		
	TYPE	Ha	%
	GROSS AREA	21.7	100
	NATURAL NON-PRODUCTIVE AREA	4.4	20.2
	UNNATURAL NON-PRODUCTIVE AREA	2.0	9.3
	REHABILITATION AREA	0.0	0.00
	NET AREA TO BE REFORESTED	15.3	70.5

E: COMME	:NTS:			
Due to size,	topography and existin	g built roads, PAS exceeds 7°	%. This is not considered avoida	ble site degradation
	DV:	O Knall	DATE	20 Fab 2045
PREPARED	BY:	G.Knoll	DATE:	20-Feb-2015

CUTBLOCK IDENTIFICATION				
Licence: K2D/AVCF	Cutting Permit: 7	Block: B15	Timber Mark K2D 007	FDU: A (Sproat)
Silviculture System: Clearcut	Opening Number: 92F.025	Location: Sproat Lake	Lattitude: 49° 18' 15"	Longitude: 125°03' 52"
TAUP(ha): 9.3	NAR (ha): 7.6	NP NAT (ha): 1.2	NP UNN (ha /%): 0.5/5.3%	P.A.S. Limit (%): 7%

Road Name	Section	Length	Location
AS 12C	0+000 to 0+591 Re-Construction	591 m	125°3'33''W // 49°18'17''N

			SOIL DISTURBANCE			
SU		Compaction	Displacement	Surface Erosion	Soil Disturbance Limit (%)	
Α		High Moderate High 5				
COMMENTS	Use puncheon or rubber matting in sensitive areas and stop work if the following soil disturbances cannot be avoided : >Wheel/Track Ruts, Compacted Areas, Gouges, Scalps<					
	Rehabilitate compacted areas and roadsides by de-compacting with hoe (preferably grapple attachment) while avoiding scalps larger than 1.5 x 1.5 m. Grass seed exposed mineral soil within 1 year of completion of harvest. Wide gouge and wide scalp are not countable soil disturbance categories in de-stumping areas. Maximum Roadside Disturbance Limit: 25%					

	RESULTS & STRATEGIES
RESULT OR STRATEGY	HOW THE STRATEGY OR RESULT APPLIES TO THE SITE
5.1.1a Order Establishing Sproat Lake Landscape Unit and Objective – Objective 1: Old Growth Management Areas (OGMAs)	 The proposed harvest area is within the Sproat Lake Landscape Unit. OGMAs have been established for the Sproat Lake Landscape Unit on July 18, 2005. No OGMAS are located beside or close to B15.
5.1.1b Order Establishing Sproat Lake Landscape Unit and Objective – Objective 2: Wildlife Tree Retention (WTR)	 The proposed harvest area is within the Sproat Lake Landscape Unit. A 1.2 ha WTRA has been retained adjacent to the block, meeting the minimum requirements of 7% set out in the approved landscape unit plan for areas within the CWH mm BEC subzone. This WTRA contains second growth Fd (Cw) representative of the pre-harvest stand. AVCF will ensure that the 5 year average of WTR will met the minimum requirements set out in the approved landscape unit plan for areas within the CWH mm BEC subzone by ensuring that each individual block meets this target. AVCF will ensure that the WTR are distributed across the landscape by ensuring that each WTR is directly adjacent to their corresponding cutblock, which is planned to be distributed across the license area. Permissible activities that may occur for this WTRA include: Removal of danger trees, WTPs with a high likelihood of windthrow may be pruned or topped to maintain the integrity of the WTP.

AVCF SITE PLAN BLOCK B15 Page 1 of 7

5.1.1c Order Establishing Sproat Lake Landscape Unit and Objective – Objective 3: Special Management Zone 17 (SMZ 17)	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2a Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1a: Sustain forest ecosystem structure and function in SMZs	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2b Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1b: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2c Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1c: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2d Vancouver Island Land Use Plan Higher Level Plan Order – Objective 2: Recovering damaged timber within SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.2.1 Soils (FPPR s.35-36)	 Soil disturbance limits comply with Section 35 of the FPPR. Limits are listed in SOIL DISTURBANCE section of the Site Plan. Permanent access structures comply with Section 36 of the FPPR. Permanent access
5.2.2 Wildlife – MAMU (FPPR s.7)	The Notice specifies the amount, distribution and attributes of wildlife habitat required for Marbled Murrelet and consequently a result or strategy is required. The harvest area is a second growth Douglas fir stand; poor Murrelet habitat.
5.2.3 Water, Fish, Wildlife and Biodiversity within Riparian Areas (FPPR s.47-52)	 For each riparian class of stream found in and adjacent to the harvest area, the minimum riparian management area (RMA) width, riparian reserve zone (RRZ) width and riparian management zone (RMZ) width, on each side of the stream, are as per the table in FPPR 47(4).

AVCF SITE PLAN BLOCK B15 Page 2 of 7

	 All RMA infringements on streams and wetlands are due to stream crossings that cannot be avoided and or there is no other practical option for locating the road FPPR 50(1)(a), FPPR 50(1)(b), FPPR 51(1)(c).
5.2.4 Community Watersheds (FPPR s.8.2)	 The proposed harvest area is within the Sproat Lake Community Watershed. CWAP recommendations have been followed and assessments completed to ensure low to moderate material adverse hydrological effects will occur as a result of forest practices.
5.2.5 Wildlife and Biodiversity – Landscape Level (FPPR s.64-65)	 The net area to be reforested is in accordance with the FPPR Sections 64 (less than 40ha) and 65 (it is not adjacent an existing cutblock).
5.2.6 Wildlife and Biodiversity – Stand Level (FPPR s.66-67)	 Wildlife tree retention targets are in accordance with the results or strategy for the approved Sproat Lake Landscape Unit Plan Objective 2. (FSP s. 5.1.1b) No signs of bear dens were observed during field work.
5.2.7 Cultural Heritage Resources (FPPR s.10)	 It is the responsibility of the licensee to ensure all First Nations parties with aboriginal title are accommodated. Information sharing with the Hupacasath First Nations has occurred and is being completed by the AVCF manager. If, during harvesting, any evidence of traditional use or cultural heritage values is found within or surrounding the area, notify the AVCF Manager and the Ministry of Forests Aboriginal Liaison Officer and cease work.
5.3.1 Visual Quality Objectives (FPPR s.7 – GAR Order)	 A visual impact assessment (VIA) was completed by ECON Forest Consulting on Feb 24th 2015. This block is located outside of any defined visual resource polygons. The VIA reviewed the potential for viewing from the travel corridors of Highway 4 and Sproat Lake recreation areas. The block is not visible from the viewpoints.

AVCF SITE PLAN BLOCK B15 Page 3 of 7

	STOCKING STANDARDS												
SU	Standards ID		Bi	iogeoclimatio	Ecosyste	m Classifi	ification Regeneration Method		Preferred Species		Acceptable		
		(ha)	Zone	Subzone	Variant	Site Se	eries					Species	
Α	1037503	7.6	CWH	mm	1	01	100		Plant	Fd,Cw		Hw ¹¹	
SU	Regen. Date	FG Date)	MITD	TS	SS	MS	Sp	MSSp		G Ht. by	/ Crop Tree Brus	to
	(yrs)	(yrs)		(m)	(st	oh)	(sr	oh)	(sph)	Species	Ht (m		io
Α	6	11		2.0	90	00	50	00	400	Fd Hw Cw	3.0 2.0 1.5	150	

AVCF SITE PLAN BLOCK B15 Page 4 of 7

CRITICAL FACTORS AND REGENERATION COMMENTS

Harvesting: Block boundaries are established with orange flagging, orange tags, and falling corners. Boundary trees may be harvested when they are adjacent to an existing road or block. All other boundary trees should not be felled or damaged.

This block will be harvested and regenerated using a clearcut silvicultural system with external wildlife tree retention. The block is designed for ground based harvesting. Road access is off an existing road (AS12C) that requires new culverts and minor brushing of roadside alder.

Windthrow: A windthrow assessment was completed by K2 Forestry Services on Feb 19th 2015. Block B15 has been assessed as having a moderate to low windthrow risk. No treatments required. See windthrow plan for further details.

Terrain Stability: It was determined that a terrain stability assessment was not required, this was based on the following rationale:

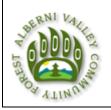
- Slopes are less than 60% and average15% within the block;
- No current or previous signs of instability;
- Roads are already constructed and stable

Recreation: The Sproat Lookout Trail Network is located to the East of Bookhout Creek. The trails appear to be active and well maintained. Anticipate high public traffic in the surrounding areas as these roads are high use by Quads, recreational users and hunters. Adequate signs are to be posted to inform the public user groups of active blasting, logging and hauling during operations. Branch AS12 will need to be closed to the public during these activities.

Root Rot: Very minor signs of root rot were noted during the survey. Endemic spot infections may exist but no treatment is prescribed.

Coarse Woody Debris: Retain a minimum of 4 logs/ha each being at least 5m in length and 30 cm in diameter at one end.

Wildlife Tree Retention Areas: WTRA totaling 1.2 ha have been designated for B15. This is equivalent to 14.8% of the total area to be harvested.


Invasive Plants: Broom occurs along sections of the highway and hauling roads on route to B15. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

Natural Range Barriers: Natural range barriers do not apply to the proposed harvest area.

Brush Competition: Expect moderate to heavy brush competition from bracken fern and alder ingress. Monitor and treat brush as required to establish new stand of conifers.

Regeneration: Plant promptly following harvesting to minimize the potential need for future brushing treatments. Focus Cw on water receiving sites.

AVCF SITE PLAN BLOCK B15 Page 5 of 7

Recommended Planting Prescription:

SU	NAR (ha)	Species	Percent (%)	Stock Type	Stems/ha	Total Stems
А	7.6	Fd Cw	80 20	412 or Larger	960 240	7296 1824

A more detailed planting prescription is to be completed during the Post-Harvest Assessment.

	RIPARIAN MANAGEMENT							
Riparian Class of Feature	\$4 \$4 \$4 \$3	Designation on Map	B15-1 B15-2 B15-3 B15-4	Falling and/or Skidding or Yarding Across a Stream	No No Yes No			

Stream B15-1, B15-2 and B15-3 are direct tributary's to stream B15-4, an S3 non-fish stream. B15-4 is gullied and greater than 20% gradient below this cutblock.

Stream B15-1 and B15-2 are to be fall away yard away, except where designated crossings are identified on the Harvest Map. Designated crossings are allowed for harvest flexibility and are to be rehabilitated post-harvest.

Stream B15-3 is also a direct tributary to stream B15-4. It is to be fall across yard across.

Retain cedar and non-merchantable stems within the RMZ where operationally practicable.

AVCF SITE PLAN BLOCK B15 Page 6 of 7

RPF SIGNATURE AND SEAL					
Prepared By: Signing RPF:	George Knoll Name (Printed) George Knoll RPF Name (Printed)	Digitally signed by George Knoll Date: 2015.02.25 09:27:06 -08'00'			
23/02/15 Date Signed (dd/mm/yy)	4582 RPF Number	RPF Signature and Seal			

"I certify that the work described herein fulfills the standards expected of a member of the Association of British Columbia Forest Professionals and that I did personally supervise the work."

AVCF SITE PLAN BLOCK B15 Page 7 of 7

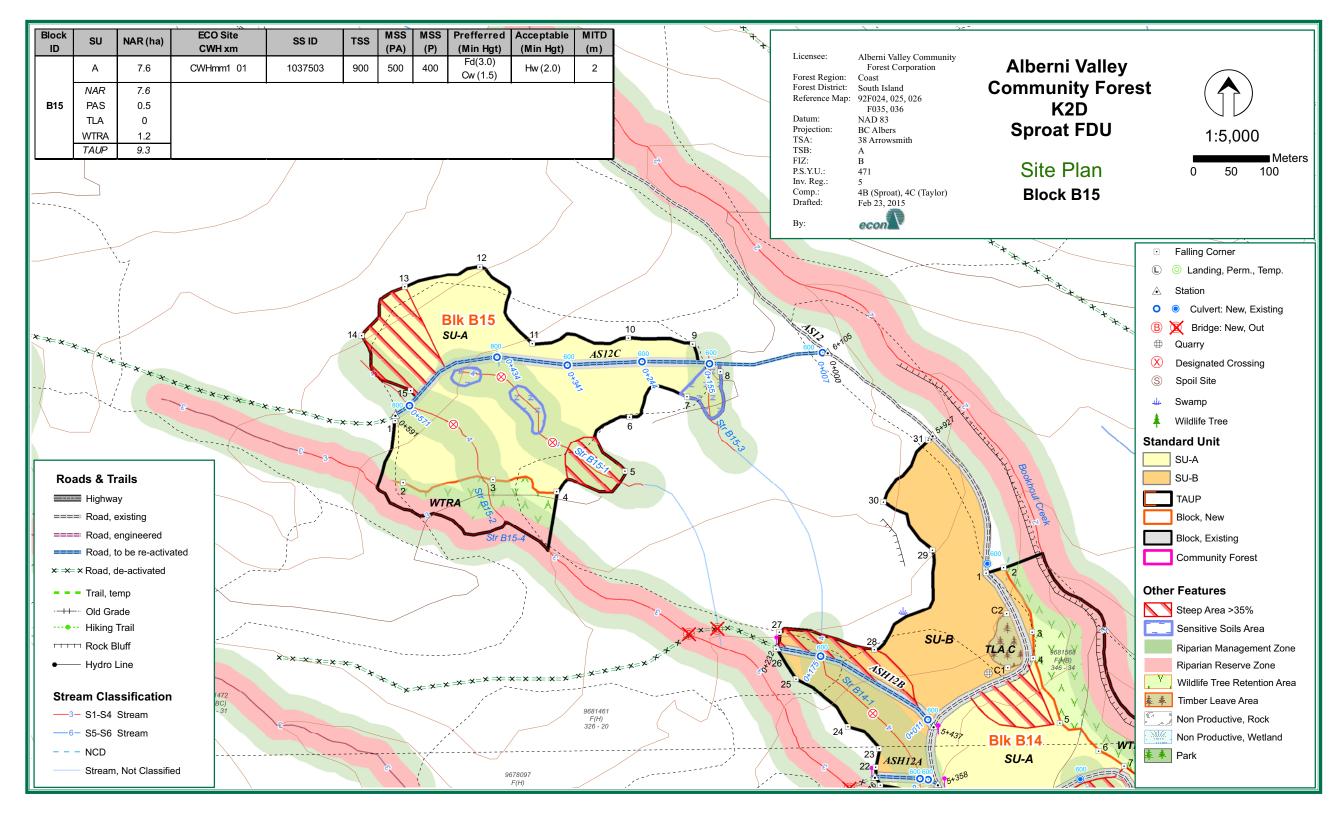
SITE DEGRADATION ESTIMATE

Δ.	DESCR	IPTION	OF A	ΔRFΔ
М.	DESCR		UF I	4REA

TENURE	СР	BLOCK	Ha
AVCF	07	B15	9.3

B: Natural Non-Productive

Туре	На
CREEK	0.00
SWAMPS	0.00
SLIDES	0.00
ROCK OPENINGS	0.00
OTHER / RESERVES	1.2
	Total NNP 1.2


C: UNNATURAL NON-PRODUCTIVE (before Rehab.)

Type	START	END	AMOUNT	LENGTH (M)	SLOPE	WIDTH (M)	На	%
AS 12C	145	170	1	25	8	6	.015	
AS 12C	170	556	1	386	8	12	.463	
AS 12C	556	591	1	35	8	6	.021	
Totals							0.5	5.3

D: SUMMARY

TYPE	Ha	%
GROSS AREA	9.3	100
NATURAL NON-PRODUCTIVE AREA	1.2	12.9
UNNATURAL NON-PRODUCTIVE AREA	0.5	5.3
REHABILITATION AREA	0.0	0.00
NET AREA TO BE REFORESTED	7.6	81.8

E: COMMENTS:			
PREPARED BY:	G.Knoll	DATE:	19-Feb-2015

CUTBLOCK IDENTIFICATION						
Licence: K2D/AVCF	Cutting Permit: 7	Block: W14	Timber Mark K2D 007	FDU: A (Sproat)		
Silviculture System: Retention	Opening Number: 92F.025	Location: Sproat Lake	Lattitude: 49° 17' 40"	Longitude: 124°59' 24"		
TAUP(ha): 6.6	NAR (ha): 5.2	NP NAT (ha): 0.8	NP UNN (ha /%): 0.6/9.5%	P.A.S. Limit (%): 7%		

Road Name	Section	Length	Location
WC 3	0+846 to1+371 New Construction	525 m	124°59′24"W // 49°17′40"N

SOIL DISTURBANCE							
SU		Compaction	Displacement	Surface Erosion	Soil Disturbance Limit (%)		
Α		Low	Moderate	High	5		
В		Low	Moderate	High	5		
COMMENTS	MMENTS Use nuncheon or rubber matting in consitive areas and stop work if the following soil disturbances cannot						

>Wheel/Track Ruts, Compacted Areas, Gouges, Scalps<

Rehabilitate compacted areas and roadsides by de-compacting with hoe (preferably grapple attachment) while avoiding scalps larger than $1.5 \times 1.5 \, \text{m}$. Grass seed exposed mineral soil within 1 year of completion of harvest. Wide gouge and wide scalp are not countable soil disturbance categories in de-stumping areas.

Maximum Roadside Disturbance Limit: 25%

be avoided:

RESULTS & STRATEGIES							
RESULT OR STRATEGY	HOW THE STRATEGY OR RESULT APPLIES TO THE SITE						
5.1.1a Order Establishing Sproat Lake Landscape	The proposed harvest area is within the Sproat Lake Landscape Unit.						
Unit and Objective – Objective 1: Old Growth	OGMAs have been established for the Sproat Lake Landscape Unit on July 18, 2005.						
Management Areas (OGMAs)	No OGMAS are located beside or close to W14.						
5.1.1b Order Establishing Sproat Lake Landscape Unit and Objective – Objective 2: Wildlife Tree Retention (WTR)	 The proposed harvest area is within the Sproat Lake Landscape Unit. A 0.8 ha WTRA has been retained adjacent to the block, meeting the minimum requirements of 12% set out in the approved landscape unit plan for areas within the CWH xm BEC subzone. This WTRA contains second growth Fd (Cw) representative of the pre-harvest stand. AVCF will ensure that the 5 year average of WTR will met the minimum requirements set out in the approved landscape unit plan for areas within the CWH mm BEC subzone by ensuring that each individual block meets this target. AVCF will ensure that the WTR are distributed across the landscape by ensuring that each WTR is directly adjacent to their corresponding cutblock, which is planned to be distributed across the license area. Permissible activities that may occur for this WTRA include: 						

AVCF SITE PLAN BLOCK W14 Page 1 of 7

	 WTPs with a high likelihood of windthrow may be pruned or topped to maintain the integrity of the WTP.
5.1.1c Order Establishing Sproat Lake Landscape Unit and Objective – Objective 3: Special Management Zone 17 (SMZ 17)	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2a Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1a: Sustain forest ecosystem structure and function in SMZs	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2b Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1b: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2c Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1c: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2d Vancouver Island Land Use Plan Higher Level Plan Order – Objective 2: Recovering damaged timber within SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.2.1 Soils	Soil disturbance limits comply with Section 35 of the FPPR. Limits are listed in SOIL DISTURBANCE section of the Site Plan.
(FPPR s.35-36)	 Permanent access structures for the development are 9.5%, exceeding the 7% limit set in FPPR S.36. This is due to the size of the block and previously built roads and is not to be considered avoidable site degredation.
5.2.2 Wildlife – MAMU (FPPR s.7)	 The Notice specifies the amount, distribution and attributes of wildlife habitat required for Marbled Murrelet and consequently a result or strategy is required. The harvest area is a second growth Douglas fir stand; poor Murrelet habitat.
5.2.3 Water, Fish, Wildlife and Biodiversity within Riparian Areas (FPPR s.47-52)	 For each riparian class of stream found in and adjacent to the harvest area, the minimum riparian management area (RMA) width, riparian reserve zone (RRZ) width and riparian management zone (RMZ) width, on each side of the stream, are as per the table in FPPR 47(4).

AVCF SITE PLAN BLOCK W14 Page 2 of 7

	 All RMA infringements on streams and wetlands are due to stream crossings that cannot be avoided and or there is no other practical option for locating the road FPPR 50(1)(a), FPPR 50(1)(b), FPPR 51(1)(c).
5.2.4 Community Watersheds (FPPR s.8.2)	 The proposed harvest area is within the Sproat Lake Community Watershed. CWAP recommendations have been followed and assessments completed to ensure low to moderate material adverse hydrological effects will occur as a result of forest practices.
5.2.5 Wildlife and Biodiversity – Landscape Level (FPPR s.64-65)	 The net area to be reforested is in accordance with the FPPR Sections 64 (less than 40ha) and 65 (it is not adjacent an existing cutblock).
5.2.6 Wildlife and Biodiversity – Stand Level (FPPR s.66-67)	 Wildlife tree retention targets are in accordance with the results or strategy for the approved Sproat Lake Landscape Unit Plan Objective 2. (FSP s. 5.1.1b) No signs of bear dens were observed during field work.
5.2.7 Cultural Heritage Resources (FPPR s.10)	 It is the responsibility of the licensee to ensure all First Nations parties with aboriginal title are accommodated. Information sharing with the Hupacasath First Nations has occurred and is being completed by the AVCF manager. If, during harvesting, any evidence of traditional use or cultural heritage values is found within or surrounding the area, notify the AVCF Manager and the Ministry of Forests Aboriginal Liaison Officer and cease work.
5.3.1 Visual Quality Objectives (FPPR s.7 – GAR Order)	 A visual impact assessment (VIA) was completed by ECON Forest Consulting on Feb 24th 2015. This block is located outside of any defined visual resource polygons. The VIA reviewed the potential for viewing from the travel corridors of Highway 4 and Sproat Lake recreation areas. The block is not visible from the viewpoints.

AVCF SITE PLAN BLOCK W14 Page 3 of 7

	STOCKING STANDARDS										
SU	J Standards ID NAR Biogeoclimatic Ecosystem Classification						Regeneration Method	Preferred Species	Acceptable		
		(ha)	Zone	Subzone	Variant	Site Series	-		Species		
Α	1037530	3.4	CWH	xm	1	01 ₈₀ 03 ₂₀	Plant	Fd	Hw, Cw, Pw ²²		
В	1046873	1.8	CWH	xm	1	01 ₈₀ 03 ₂₀	Plant as required	Fd	Hw, Cw, Pw ²²		

(²²) Risk of white pine blister rust. SU B is a partial cut area. Trees marked for removal are painted with blue dots. Fill planting with Fd will be determined post-harvest to ensure minimum adequate site occupancy and stocking such that a free growing stand is maintained.

SU	Regen. Date	FG Date Late	MITD	TSS	MSSp	MSSp	Min. FG Ht. by Species		Crop Tree to Brush
	(yrs)	(yrs)	(m)	(sph)	(sph)	(sph)	Species	Ht (m)	Ratio %)
Α	3	11	2.0	900	500	400	Fd Hw Cw Pw	3.0 2.0 1.5 2.5	150
В	n/a	n/a	n/a	400	200	200	n/a	n/a	n/a

AVCF SITE PLAN BLOCK W14 Page 4 of 7

CRITICAL FACTORS AND REGENERATION COMMENTS

Harvesting: Block boundaries are established with orange flagging, orange tags, and falling corners. Boundary trees may be harvested when they are adjacent to an existing road or block. All other boundary trees should not be felled or damaged.

Partial cut areas are flagged with orange and black candy-strip ribbon and trees marked for removal are painted with blue dots. Non-marked leave trees may be substituted for safety reasons but alternative trees of the same diameter and species must be retained in their place.

This block will be harvested and regenerated using a retention silvicultural system with external wildlife tree retention. The block is designed for ground based harvesting. Road access is off a new proposed road (WC 3).

Windthrow: A windthrow assessment was completed by K2 Forestry Services on Feb 25th, 2015. Block W14 has been assessed as having a moderate to low windthrow risk. No treatments required. See windthrow plan for further details.

Terrain Stability: It was determined that a terrain stability assessment was not required, this was based on the following rationale:

- Slopes are less than 60% and average15% within the block;
- No current or previous signs of instability;
- Roads are already constructed and stable

Recreation Anticipate high public traffic in the surrounding areas as these roads are high use by Quads, recreational users and hunters. Adequate signs are to be posted to inform the public user groups of active blasting, logging and hauling during operations. Branch WC 3 will need to be closed to the public during these activities.

Root Rot: Very minor signs of root rot were noted during the survey. Endemic spot infections may exist but no treatment is prescribed.

Coarse Woody Debris: Retain a minimum of 4 logs/ha each being at least 5m in length and 30 cm in diameter at one end.

Wildlife Tree Retention Areas: WTRA totaling 0.8 ha have been designated for W14. This is equivalent to 12.1% of the total area to be harvested.

Invasive Plants: Broom occurs along sections of the highway and hauling roads on route to W16. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

Natural Range Barriers: Natural range barriers do not apply to the proposed harvest area.

Brush Competition: Expect moderate to heavy brush competition from bracken fern and alder ingress. Monitor and treat brush as required to establish new stand of conifers.

Regeneration: Plant promptly following harvesting to minimize the potential need for future brushing treatments. Focus Cw on water receiving sites.

AVCF SITE PLAN BLOCK W14 Page 5 of 7

Recommended Planting Prescription:

SU	NAR (ha)	Species	Percent (%)	Stock Type	Stems/ha	Total Stems
А	3.4	Fd Cw	90 10	412 or Larger	1080 120	3672 408
В	1.8	Fd Cw	90 10	412 or Larger	n/a	n/a

A more detailed planting prescription is to be completed during the Post-Harvest Assessment. SU B is a partial cut area. Planting may be required to ensure minimum stocking standards are met.

	RIPARIAN MANAGEMENT								
Riparian Class of Feature	\$4 \$4 \$4	Designation on Map	W14-1 W14-2 Stream 1	Falling and/or Skidding or Yarding Across a Stream	No No No				

Stream W14-1, W14-2 and stream 1 are small S4 streams, non-fish bearing and ephemeral. The substrate is rocky and the streams are dry the majority of the time. They are prescribed fall away yard away. These streams are direct tributary to Weiner Creek. Harvesting operations must minimize sedimentation into these creeks.

Retain cedar and non-merchantable stems within the RMZ where operationally practicable.

AVCF SITE PLAN BLOCK W14 Page 6 of 7

	RPF SIGNATURE AND SEAL					
Prepared By:	George Knoll Name (Printed)	Digitally signed by George Knoll				
Signing RPF:	George Knoll	Date:				
	RPF Name (Printed)	2015.02.25				
25/02/15	4582	09:23:38 -08'00'				
Date Signed (dd/mm/yy)	RPF Number	RPF Signature and Seal				

"I certify that the work described herein fulfills the standards expected of a member of the Association of British Columbia Forest Professionals and that I did personally supervise the work."

AVCF SITE PLAN BLOCK W14 Page 7 of 7

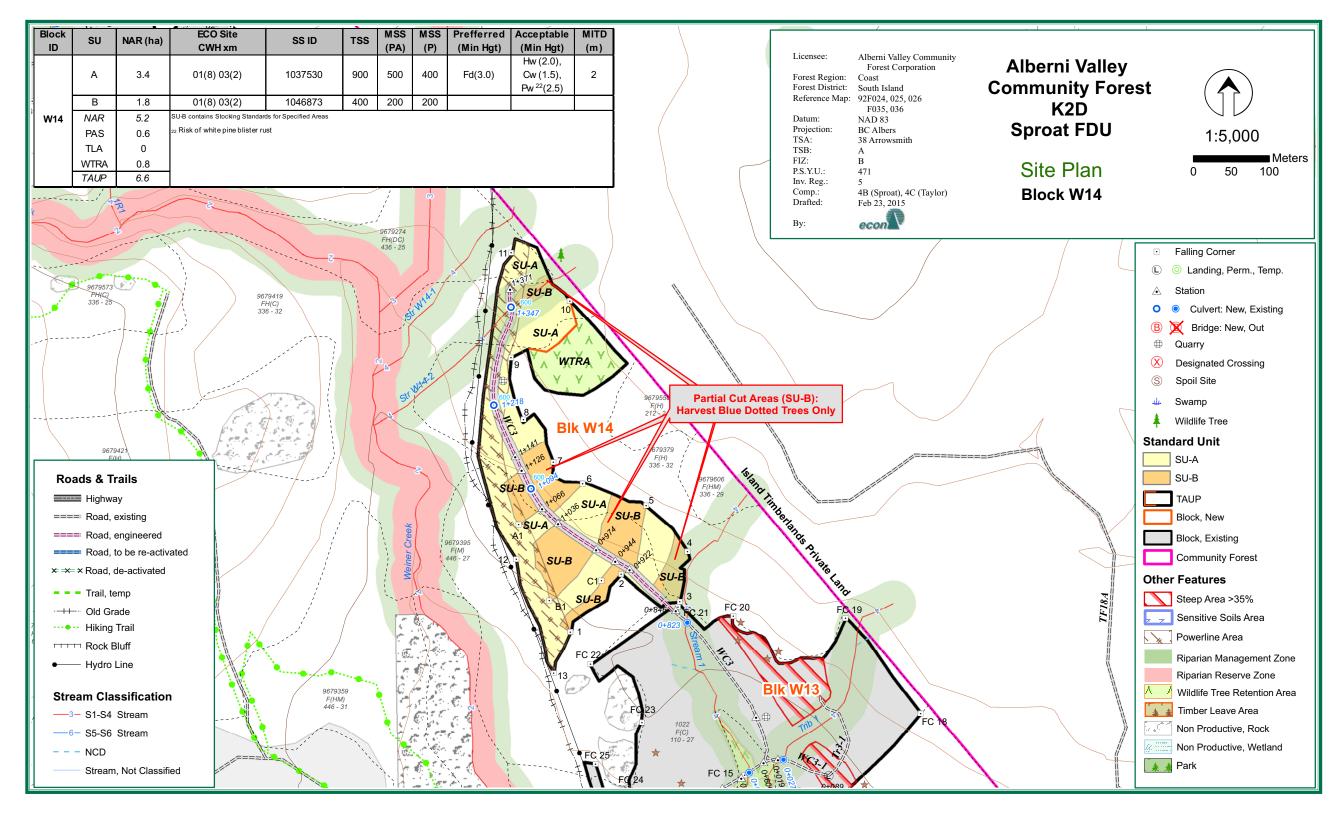
SITE DEGRADATION ESTIMATE

A:	DES	CRIP	TION	OF	AREA
----	-----	------	------	----	-------------

TENURE	СР	BLOCK	На
AVCF	07	W14	6.6

B: Natural Non-Productive

Туре	На
CREEK	0.00
SWAMPS	0.00
SLIDES	0.00
ROCK OPENINGS	0.00
OTHER / RESERVES	0.8
	Total NNP 0.8


C: UNNATURAL NON-PRODUCTIVE (before Rehab.)

Туре	START	END	AMOUNT	LENGTH (M)	SLOPE	WIDTH (M)	На	%
WC 3	846	1371	1	525	8	12	0.63	
		·			•			
					•			
Totals							0.63	9.5

D: SUMMARY

TYPE	На	%
GROSS AREA	6.6	100
NATURAL NON-PRODUCTIVE AREA	0.8	12.1
UNNATURAL NON-PRODUCTIVE AREA	0.6	9.5
REHABILITATION AREA	0.0	0.00
NET AREA TO BE REFORESTED	5.2	78.4

E: COMMENTS:			
Due to size, topography a	and existing built roads, PAS exceeds	7%. This is not considered avoidable s	site degradation
PREPARED BY:	G.Knoll	DATE:	25-Feb-2015

CUTBLOCK IDENTIFICATION						
Licence: K2D/AVCF	Cutting Permit: 7	Block: W16	Timber Mark K2D 007	FDU: A (Sproat)		
Silviculture System: Clearcut	Opening Number: 92F.025	Location: Sproat Lake	Lattitude: 49° 18' 16"	Longitude: 125°00' 28"		
TAUP(ha): 20.2	NAR (ha): 15.8	NP NAT (ha): 2.5	NP UNN (ha /%): 1.9/9.0%	P.A.S. Limit (%): 7 %		

Road Name	Section	Length	Location
ASH 6B	0+000 to 0+728 New Construction	728 m	125°00'21"W // 49°18'16"N
ASH 6	0+000 to 1+176 Re-Construction	1176m	125°00'21"W // 49°18'16"N

	SOIL DISTURBANCE						
SU		Compaction	Displacement	Surface Erosion	Soil Disturbance Limit (%)		
Α		Low	Moderate	Moderate	5		
COMMENTS	Use puncheon or rubber matting in sensitive areas and stop work if the following soil disturbances cannot be avoided : >Wheel/Track Ruts, Compacted Areas, Gouges, Scalps<						
	Rehabilitate compacted areas and roadsides by de-compacting with hoe (preferably grapple attachment) while avoiding scalps larger than 1.5 x 1.5 m. Grass seed exposed mineral soil within 1 year of completion of harvest. Wide gouge and wide scalp are not countable soil disturbance categories in de-stumping areas.						
	Maximum I	Roadside Disturbance Limi	t: 25%				

	RESULTS & STRATEGIES
RESULT OR STRATEGY	HOW THE STRATEGY OR RESULT APPLIES TO THE SITE
5.1.1a Order Establishing Sproat Lake Landscape Unit and Objective – Objective 1: Old Growth Management Areas (OGMAs)	 The proposed harvest area is within the Sproat Lake Landscape Unit. OGMAs have been established for the Sproat Lake Landscape Unit on July 18, 2005. No OGMAS are located beside or close to W16.
5.1.1b Order Establishing Sproat Lake Landscape Unit and Objective – Objective 2: Wildlife Tree Retention (WTR)	 The proposed harvest area is within the Sproat Lake Landscape Unit. A 2.5 ha WTRA has been retained adjacent to the block, meeting the minimum requirements of 12% set out in the approved landscape unit plan for areas within the CWH xm BEC subzone. This WTRA contains second growth Fd (Cw) representative of the pre-harvest stand. AVCF will ensure that the 5 year average of WTR will met the minimum requirements set out in the approved landscape unit plan for areas within the CWH mm BEC subzone by ensuring that each individual block meets this target. AVCF will ensure that the WTR are distributed across the landscape by ensuring that each WTR is directly adjacent to their corresponding cutblock, which is planned to be distributed across the license area. Permissible activities that may occur for this WTRA include:

AVCF SITE PLAN BLOCK W16 Page 1 of 7

	 Removal of danger trees, WTPs with a high likelihood of windthrow may be pruned or topped to maintain the integrity of the WTP.
5.1.1c Order Establishing Sproat Lake Landscape Unit and Objective – Objective 3: Special Management Zone 17 (SMZ 17)	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2a Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1a: Sustain forest ecosystem structure and function in SMZs	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2b Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1b: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2c Vancouver Island Land Use Plan Higher Level Plan Order – Objective 1c: Sustain forest ecosystem structure and function in SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.1.2d Vancouver Island Land Use Plan Higher Level Plan Order – Objective 2: Recovering damaged timber within SMZs.	The proposed harvest area does not lie within a SMZ, results and strategies do not apply.
5.2.1 Soils	Soil disturbance limits comply with Section 35 of the FPPR. Limits are listed in SOIL DISTURBANCE section of the Site Plan.
(FPPR s.35-36)	 Permanent access structures for the development are 9.0%, exceeding the 7% limit set in FPPR S.36. This is due to the size of the block and previously built roads and is not to be considered avoidable site degredation.
5.2.2 Wildlife – MAMU (FPPR s.7)	 The Notice specifies the amount, distribution and attributes of wildlife habitat required for Marbled Murrelet and consequently a result or strategy is required. The harvest area is a second growth Douglas fir stand; poor Murrelet habitat.
5.2.3 Water, Fish, Wildlife and Biodiversity within Riparian Areas (FPPR s.47-52)	 For each riparian class of stream found in and adjacent to the harvest area, the minimum riparian management area (RMA) width, riparian reserve zone (RRZ) width and riparian management zone (RMZ) width, on each side of the stream, are as per the table in FPPR 47(4).

AVCF SITE PLAN BLOCK W16 Page 2 of 7

	 All RMA infringements on streams and wetlands are due to stream crossings that cannot be avoided and or there is no other practical option for locating the road FPPR 50(1)(a), FPPR 50(1)(b), FPPR 51(1)(c).
5.2.4 Community Watersheds (FPPR s.8.2)	 The proposed harvest area is within the Sproat Lake Community Watershed. CWAP recommendations have been followed and assessments completed to ensure low to moderate material adverse hydrological effects will occur as a result of forest practices.
5.2.5 Wildlife and Biodiversity – Landscape Level (FPPR s.64-65)	 The net area to be reforested is in accordance with the FPPR Sections 64 (less than 40ha) and 65 (it is not adjacent an existing cutblock).
5.2.6 Wildlife and Biodiversity – Stand Level (FPPR s.66-67)	 Wildlife tree retention targets are in accordance with the results or strategy for the approved Sproat Lake Landscape Unit Plan Objective 2. (FSP s. 5.1.1b) No signs of bear dens were observed during field work.
5.2.7 Cultural Heritage Resources (FPPR s.10)	 It is the responsibility of the licensee to ensure all First Nations parties with aboriginal title are accommodated. Information sharing with the Hupacasath First Nations has occurred and is being completed by the AVCF manager. If, during harvesting, any evidence of traditional use or cultural heritage values is found within or surrounding the area, notify the AVCF Manager and the Ministry of Forests Aboriginal Liaison Officer and cease work.
5.3.1 Visual Quality Objectives (FPPR s.7 – GAR Order)	 A visual impact assessment (VIA) was completed by ECON Forest Consulting on Feb 24th 2015. This block is located outside of any defined visual resource polygons. The VIA reviewed the potential for viewing from the travel corridors of Highway 4 and Sproat Lake recreation areas. The block is not visible from the viewpoints.

AVCF SITE PLAN BLOCK W16 Page 3 of 7

	STOCKING STANDARDS								
SU	Standards ID		Ві	Biogeoclimatic Ecosystem Classification			Regeneration Method	Preferred Species	
		(ha)	Zone	Subzone	Variant	Site Series			Species
Α	1037531	15.8	CWH	xm	1	03 ₈₀ 01 ₂₀	Plant	Fd, Pl	Cw, Hw [*] , Pw ²²

(²²) Risk of white pine blister rust. ()Species are listed as tertiary in the Vancouver Forest Region (VFR) recommended stocking standards, but not listed as acceptable species. They have been included as acceptable for a minor portion of the stand if a cruise report indicates it was present as merchantable volume in the pre-harvest stand. The percentage of the free-growing stand that may be comprised of the species will be on a sliding scale within 5 percentage points leading up to the 20%. For example, if a cruise report showed 15% Hw merchantable volume in the pre-harvest stand, within 5 percentage points leading up to the 15% of the free growing stand could be Hw.

SU	Regen. Date	FG Date Late	MITD	TSS	MSSp	MSSp	Min. F Sp	G Ht. by pecies	Crop Tree to Brush
	(yrs)	(yrs)	(m)	(sph)	(sph)	(sph)	Species	Ht (m)	Ratio %)
Α	8	11	2.0	800	400	400	Fd Hw Cw Pl Pw	2.0 1.25 1.0 1.25 2.5	150

AVCF SITE PLAN BLOCK W16 Page 4 of 7

CRITICAL FACTORS AND REGENERATION COMMENTS

Harvesting: Block boundaries are established with orange flagging, orange tags, and falling corners. Boundary trees may be harvested when they are adjacent to an existing road or block. All other boundary trees should not be felled or damaged.

This block will be harvested and regenerated using a clearcut silvicultural system with external wildlife tree retention. The block is designed for ground based harvesting. Road access is off an existing road (ASH 6) that requires new culverts, spot ballasting and minor brushing of roadside alder and new construction of ASH 6B, which is an old road grade.

Windthrow: A windthrow assessment was completed by K2 Forestry Services on Feb 23rd, 2015. Block W16 has been assessed as having a moderate to low windthrow risk. No treatments required. See windthrow plan for further details.

Terrain Stability: It was determined that a terrain stability assessment was not required, this was based on the following rationale:

- Slopes are less than 60% and average15% within the block;
- No current or previous signs of instability;
- Roads are already constructed and stable

Recreation Anticipate high public traffic in the surrounding areas as these roads are high use by Quads, recreational users and hunters. Adequate signs are to be posted to inform the public user groups of active blasting, logging and hauling during operations. Branch AS12 will need to be closed to the public during these activities.

Root Rot: Very minor signs of root rot were noted during the survey. Endemic spot infections may exist but no treatment is prescribed.

Coarse Woody Debris: Retain a minimum of 4 logs/ha each being at least 5m in length and 30 cm in diameter at one end.

Wildlife Tree Retention Areas: WTRA totaling 2.5 ha have been designated for W16. This is equivalent to 12.3% of the total area to be harvested.

Invasive Plants: Broom occurs along sections of the highway and hauling roads on route to W16. Monitor and treat broom and other invasive species during early establishment. Grass seed exposed soil on or adjacent to roads, trails, and landing sites as soon as possible following harvest.

Natural Range Barriers: Natural range barriers do not apply to the proposed harvest area.

Brush Competition: Expect moderate to heavy brush competition from bracken fern and alder ingress. Monitor and treat brush as required to establish new stand of conifers.

Regeneration: Plant promptly following harvesting to minimize the potential need for future brushing treatments. Focus Cw on water receiving sites.

AVCF SITE PLAN BLOCK W16 Page 5 of 7

Recommended Planting Prescription:

SU	NAR (ha)	Species	Percent (%)	Stock Type	Stems/ha	Total Stems
Α	15.8	Fd Cw	90 10	412 or Larger	1080 120	17064 1896

A more detailed planting prescription is to be completed during the Post-Harvest Assessment.

	RIPARIAN MANAGEMENT							
Riparian Class of Feature	NCD S4 S4 S4 NCD	Designation on Map	16-1 16-2 16-3 16-4 16-5	Falling and/or Skidding or Yarding Across a Stream	Yes No No No Yes			

Stream 16-1 and 16-5 are small ephemeral NCD's. They are to be fall across yard across

Stream 16-2, 16-3 and 16-4 are small S4 streams, non-fish bearing and ephemeral. The substrate is rocky and the streams are dry the majority of the time. They are prescribed fall away yard away with designated crossings to be used for harvesting flexibility.

Retain cedar and non-merchantable stems within the RMZ where operationally practicable.

AVCF SITE PLAN BLOCK W16 Page 6 of 7

RPF SIGNATURE AND SEAL				
Prepared By: Signing RPF:	George Knoll Name (Printed) George Knoll RPF Name (Printed)	Digitally signed by George Knoll Date: 2015.02.25 09:28:31 -08'00'		
24/02/15 Date Signed (dd/mm/yy)	4582 RPF Number	RPF Signature and Seal		

"I certify that the work described herein fulfills the standards expected of a member of the Association of British Columbia Forest Professionals and that I did personally supervise the work."

AVCF SITE PLAN BLOCK W16 Page 7 of 7

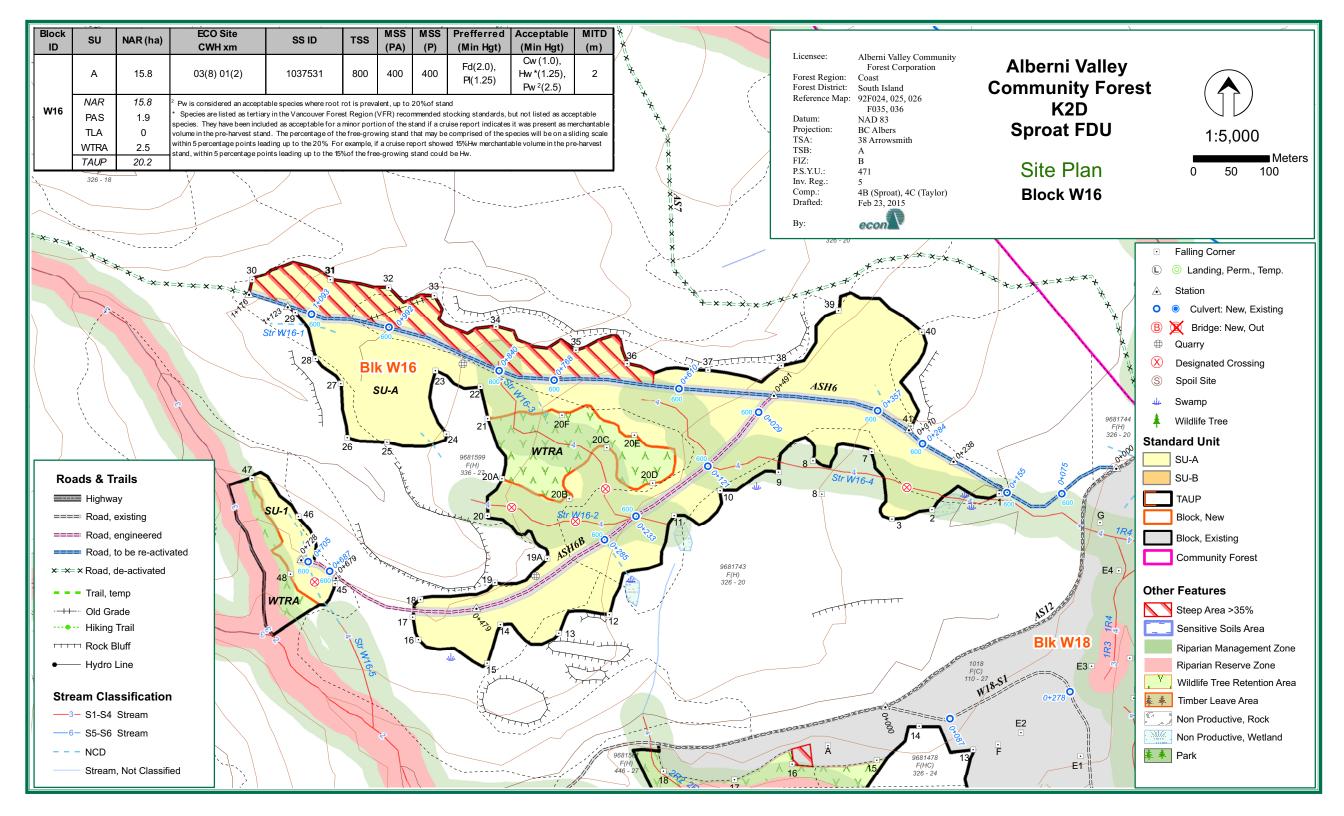
SITE DEGRADATION ESTIMATE

A: DESCRIPTION OF AREA

TENURE	СР	BLOCK	На
AVCF	07	W16	20.2

B: Natural Non-Productive

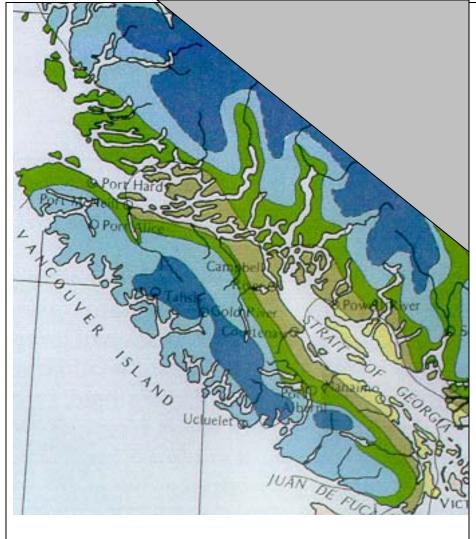
Туре	На
CREEK	0.00
SWAMPS	0.00
SLIDES	0.00
ROCK OPENINGS	0.00
OTHER / RESERVES	2.5
	Total NNP 2.5


C: UNNATURAL NON-PRODUCTIVE (before Rehab.)

Туре	START	END	AMOUNT	LENGTH (M)	SLOPE	WIDTH (M)	На	%
ASH 6	155	310	1	155	8	6	.093	
ASH 6	310	1113	1	803	8	12	.9636	
ASH 6	1113	1176	1	63	8	6	.0378	
ASH 6B	0	559	1	559	8	12	.6708	
ASH 6B	679	728	1	49	8	12	.0588	
		·						
Totals							1.82	9.0

D: SUMMARY

TYPE	На	%
GROSS AREA	20.2	100
NATURAL NON-PRODUCTIVE AREA	2.5	12.3
UNNATURAL NON-PRODUCTIVE AREA	1.9	9.0
REHABILITATION AREA	0.0	0.00
NET AREA TO BE REFORESTED	15.8	78.7


E: COMMENTS:			
Due to size, topography ar	nd existing built roads, PAS ex	ceeds 7%. This is not considered avoidable s	ite degradation
PREPARED BY:	G.Knoll	DATE:	20-Feb-2015

Appendix 6: Wet Weather Shutdown Guidelines

Wet Weather Shutdown (modified Nov 7, 2006)

Zone	Mean Annual	Shutdown Threshold
	Precip (mm)	(mm/24 hours)
1	750	20
2	1500	40
3	2500	60
4	3000	75
5	3500	90

TABLE B Local Soil Type	Multiplier Factor
Very Erodible (e.g. lacustrine)	0.4
Erodible (e.g. organics, sands)	0.6
Least Erodible (e.g. colluvium, till)	0.8
Bedrock	1.0

TABLE C Slope Modifier	Multiplier
	Factor
0% - 57	1.0
57% - 70%	0.9
71% - 88%	0.8
89% +	0.7

Instructions:

- 1) Use base shutdown threshold from Table A
- 2) Multiply by Soil Type Modifier from Table B
- 3) Multiply result by Slope Modifier from Table C

Result is rainfall shutdown threshold in millimeters in a 24 hour period

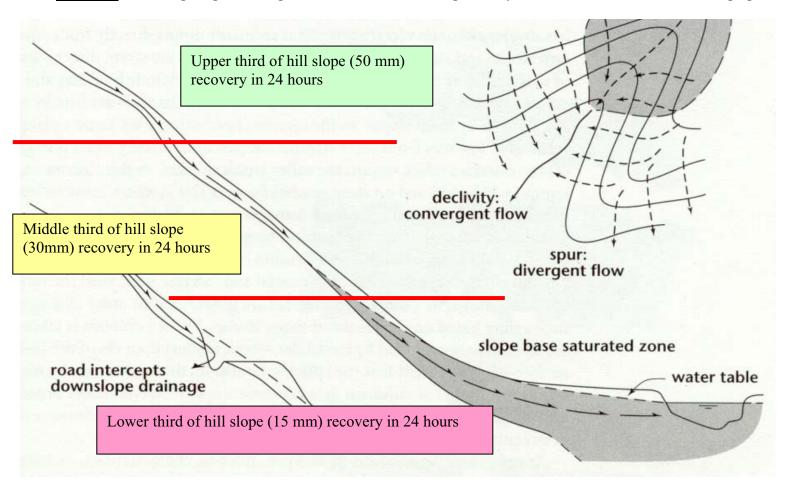
Example

		Shutdown·
Zone¤	Table·A:·Mean·Annual·¤	Threshold¤
°¤	Precipitation⋅(mm)¤	(mm/24·hours)¤
1¤	750¤	20 ¤
2¤	1500¤	40 =
3 ¤	2500¤	60¤
4m	3000¤	75¤
5¤	3500¤	90¤

TABLE·B·Local·Soil·Type¤	Multiplier# Factor#
Very·Erodible·(e.g.· lacustrine)¤	0.4¤
Erodible·(e.g.·organics,· sands)¤	0.6¤
Least·Erodible·(e.g.· colluvium,·till)¤	0.8¤
Bedrock¤	1.0¤

TABLE·C·Slope·Modifier#	Multiplier¤
o _≅	Factor¤
0 %·-·57♯	1.0¤
·57 %· -·70 %¤	0.9¤
71 %· -·88 %¤	¤8.0
89 %-+¤	0.7¤

For Dark Blue Zone 5; 24 Hr Shutdown Criteria = 90 x 0.8 x 0.8 = 58 mm


Return to Work Estimation Guide

Water balance returns to normal after a heavy rainfall period subject to a number of variables

- -slope position
- -slope gradient
- -soil type and depth (or proximity to bedrock)

Where a road is located above the worksite, interception by ditch lines may have the effect of increasing the recovery rate for lower slope positions

Using the following sketch as a guide, identify the slope position of the planned activity (upper, middle and lower thirds) In an **average** situation precipitation input is reduced in a 24 hour period by the indicated values based on slope position

Appendix 7: Best Management Practices for a Community Watershed

Best Management Practices for Community Watersheds

Refer also to Section 5.2.4 of the AVCF FSP.

<u>Ditch Cleaning</u>: where needed, ditches are to be cleaned when conditions are dry. Ditch spoil is not to be windrowed along the road shoulder. On moderate slopes, the ditch spoil could be thinly spread on the slope below the road, but not heaped or piled against trees. Where the road is on steep slopes, the ditch spoil should be end hauled to a suitable spoil site.

<u>Culvert replacement</u>: Where required culvert replacements are to be done during dry weather (except for emergency repairs or replacements). The inlet and outlet areas on new culverts, and the adjacent fill slopes, are to be armoured to prevent erosion or sloughing into the creek.

<u>Rock Ballasting of road surface</u>: For new road construction, where the road is close to a stream channel, the road surface is to be ballasted with clean rock. The road surface is also to be rock ballasted for 30 meters either side of stream culverts.

Road grading practices: grading is to be avoided during heavy rain.

Shutdown or harvest completion: In preparation for a shutdown for a period longer than 30 days or at a harvest completion, the following measures will be taken:

No excavated or end hauled material will be left piled in such a way as to become unstable during the shutdown period. Spoil sites, piles and fills will be sloped uniformly to prevent instability.

Ditches and culverts will be left clear and functional, with adequate inlet basins to minimize the potential for plugging.

On sections of steep grades, cross ditches and back-up swales will be constructed where needed to minimize ditch erosion.

If road construction has reached a drainage course but a drainage structure has not been installed prior to shutdown, the drainage course will be left open and unimpeded.

Where exposed silty soils could erode and enter surface streams or ditches connected to streams, silt fences, hay bales or erosion blankets will be applied as needed for temporary protection.

Appendix 8: Cruise Reports

AVCF

K2D - CP# PRE

Block #: B14, B15, W14, and W16

SUMMARY OF VOLUMES (CGNF)
FULL VOLUMES APPLIED

19-Feb-2015 02:19:32PM

Appraisal Summary Report

Grades: Cruiser Called Alpha Average Line Method FIZ: B

Cruiser Est Decay AVCF Licence Number: K2D CP: PRE

Project: K2_AVCF Computerized Breakage

Location :

PSYU: Nootka Cruiser Est Waste

Region: 2 - West Coast District: 04 - South Island

465.984

455.419

470

21

10.566

APPSM-1, p2

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd

Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

No Of Blocks : 4

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 30 Immature Blocks:(cm) 12.0 10.0 30

Standard Log Length: (m) 10.00

Net Area: [All Treatment Units: 44.5]

All Method Summary

Cruiser Call Variable Length Grades % Species H I J U Net Volume (m3) Net Volume / ha Code Description All Live DΡ All Live DΡ 64 36 BA Balsam 346 285 61 7.776 6.401 1.375 CE Cedar 58 40 2 1573 1573 0 35.350 35.350 0.000 FI Doug-Fir 10 2 56 31 16120 15711 409 362.248 353.057 9.190 1 0.000 HE Hemlock 31 31 19 14 1232 1232 0 27.687 27.687 AL Alder 26 1408 1408 31.650 31.650 0.000 MA Maple 100 57 57 0 1.273 1.273 0.000

20736

Harvesting Method Summaries

Harvest Method	Net Volume	Net Vol /10m Log	Net Vol /Hectare	Hem+ Bal%	Partial Cut%	Slope%	Down Tree%	Heavy Fire%
SC	20736	0.29	465.984	8		14	2	0
Conventional Methods	20736	0.29	465.984	8		14	2	0
All Methods	20736	0.29	465.984	8			2	0

20266

Cutting Authority

Total

caccing Machoricy		
95% Confidence Interval	13.5	
Plots/Ha	1.3	
Cruised Trees/Plot	4.4	
Net 2nd Growth-Conifer %	90.6	
Net 2nd Growth-Conifer (m3)	17458	
Net Immature by Block %	B14: 90%	B15: 70% W14:100% W16: 77%
Non Heli Select Conifer (m3/ha)	433.06	
Heli Select Total (decimal)	0.00	
Heli+Skyline Total (decimal)	0.00	
Piece Size - Conifer (m3/10m log)	0.29	
Cruise Date (yy-mm):	15-02	
# Plots: 56 # <= 5yrs: 35	# > 5yrs:	0 # > 10yrs: 0 # no date:

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

Double Sampling Factors

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

	F	C	Н	В	D	MB
Utilization Limits	r	C	11	Б	Б	PID
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0
под пен ш	10.0	10.0	10.0	10.0	10.0	10.0
Type Factors						
Type Factors						
Forest Types:						
1 :Fd (HwCwDrBa)	0.9957	1.3333	2.3810	0.7143	1.1905	1.0000
2 :Fd (CwBaHwDr)	1.0667	3.0000	1.0000	0.5000	0.5000	1.0000
3 :Fd (Cw)	1.0965	0.8333	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.1142	0.7368	1.0000	1.0000	0.9211	0.7368
1 'I'd (BIEWINS)	1.1112	0.7500	1.0000	1.0000	0.5211	0.7500
Block Factors						
220011 24000022						
Block B14:						
Forest Types:						
1 :Fd (HwCwDrBa)	0.9957	1.3333	2.3810	0.7143	1.1905	1.0000
2 :Fd (CwBaHwDr)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3 :Fd (Cw)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Block B15:						
Forest Types:						
1 :Fd (HwCwDrBa)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2 :Fd (CwBaHwDr)	1.0667	3.0000	1.0000	0.5000	0.5000	1.0000
3 :Fd (Cw)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Block W14:						
Forest Types:						
1 :Fd (HwCwDrBa)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2 :Fd (CwBaHwDr)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3 :Fd (Cw)	1.0965	0.8333	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Block W16:						
Forest Types:						
1 :Fd (HwCwDrBa)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2 :Fd (CwBaHwDr)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3 :Fd (Cw)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.1142	0.7368	1.0000	1.0000	0.9211	0.7368

Harvest Method Factors

Method: SC: Ground Systems - Clearcut

Forest Types:

1 :Fd (HwCwDrBa) 0.9957 1.3333 2.3810 0.7143 1.1905 1.0000

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

DSF- 2 , p4

Double Sampling Factors

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

AVCF

Cruiser Est Decay Cruiser Est Waste PSYU: Nootka

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Project: K2_AVCF

Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

Version: 2014.00 IFS build 5885

	F	С	Н	В	D	MB
	г	C	п	Б	ע	MP
Utilization Limits						
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0
Method: SC: Ground Syst	ems - Clearcut					
2 :Fd (CwBaHwDr)	1.0667	3.0000	1.0000	0.5000	0.5000	1.0000
3 :Fd (Cw)	1.0965	0.8333	1.0000	1.0000	1.0000	1.0000
4 :Fd (DrCwMb)	1.1142	0.7368	1.0000	1.0000	0.9211	0.7368

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Volume Statistical Analysis
Grades: Cruiser Called Alpha FIZ: B

Average Line Method

Project: K2_AVCF

Cruiser Est Decay

PSYU: Nootka

Filename: AVCF_internal.ccp

Licence Number: K2D CP: PRE

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 30
Immature Blocks: (cm) 12.0 10.0 30

Standard Log Length: (m) 10.00

Forest Type	Cnt	Plots Mea	Tot	Area ha	Net Volume m3/ha	Proportional Volume	Cnt	Trees Mea	Tot	Standard Deviation	Coeff. of Variation	Sampling 1 SE%	g Error 2 SE%
1 :Fd (Hw 2 :Fd (Cw 3 :Fd (Cw	,	10 5 5	21 10 6	15.3 7.6 5.8	523.5 431.2 524.5	0.38 0.16 0.15	57 23 6	44 19 20	101 42 26	327.7612 151.3583 177.7885	69.9 38.9 37.0	14.8 11.6 13.9	30.8 26.1 35.7
4 :Fd (Dr	CwMb) 5 22	14 34	19 56	15.8 44.5	405.5 466.0	0.32	23 109	54 137	77 246	130.6993	34.0 39.3	7.5 6.7	15.8 13.5

Number of live & dead potential trees sampled is 137

Number of dead useless trees sampled is 1

Number of live useless trees sampled is 1

The measured weighted sampling error is 19.5% at the 95% confidence level

The weighted sampling error is 13.5% at the 95% confidence level

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

Average Line Method

Project: K2_AVCF

BAS- 1 , p6 19-Feb-2015 02:19:32PM Basal Area Statistical Analysis

FIZ: B

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste

Computerized Breakage

District: 04 - South Island

PSYU: Nootka

Region: 2 - West Coast

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Filename: AVCF_internal.ccp

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 Immature Blocks:(cm) 30 12.0 10.0

Standard Log Length: (m) 10.00

Forest Type	Plots Cnt Mea Tot	Area ha	Basal Area m2/ha	Proportional Basal Area	Tree Cnt Mea		Standard Deviation	Coeff. of Variation	Samplin 1 SE%	g Error 2 SE%
1 :Fd (HwCwDrBa) 2 :Fd (CwBaHwDr)	11 10 21 5 5 10	15.3 7.6	67.3 58.8	0.38 0.16	57 44 23 19		25.2850 15.8941	37.6 27.0	8.2 8.5	17.1 19.3
3 :Fd (Cw)	1 5 6	5.8	60.7	0.13	6 20	26	19.1276	31.5	12.9	33.1
4 :Fd (DrCwMb)	5 14 19	15.8	56.7	0.33	23 54	77	18.9410	33.4	7.7	16.1
TOTAL	22 34 56	44.5	61.2		109 137	246		34.0	4.5	9.1

Number of live & dead potential trees sampled is 137

Number of dead useless trees sampled is 1

Number of live useless trees sampled is 1

The measured weighted sampling error is 15.2% at the 95% confidence level

The weighted sampling error is 9.1% at the 95% confidence level

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

AHV- 1 , p7

Average Line Method

Project: K2_AVCF

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

All Method Summary

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

[All Treatment Units : 44.5]

Licence Number: K2D CP: PRE

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits Min DBH cm (I) Stump Ht cm (I) Top Dia cm (I) Log Len m Volume and Size Data					12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	22044 20736 465.984 455.419 10.566	20404 19271 433.061 422.495 10.566	1640 1465 32.924 32.924	16997 16120 362.248 353.057 9.190	1670 1573 35.350 35.350	1340 1232 27.687 27.687	397 346 7.776 6.401 1.375	1580 1408 31.650 31.650	60 57 1.273 1.273
Decay Waste(billing) Total Cull (DWB)	00 00 00	1 1 6	1 1 6	1 5 11	1 1 5	6	0 4 8	8	1 5 11	5
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	0.46 0.29 5	0.46 0.29 6	0.39	0.46 0.28 7	0.35	0.92 0.56	0.64 0.40	0.40 0.25	0.23
Net Second Growth	%		90.6		93.1	59.6	100.0	82.3		
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	00 010 010	2	1	8	1		5		8	

Cruiser	Call	Variable	Length	Grades %	k

#2 Sawlog	Н	10	11		10		31			
#3 Sawlog	I	4	4		2		31			
#4 Sawlog	J	49	53		56	58	19	64		
#5 Utility	U	34	31	71	31	40	14	36	74	
#7 Chipper	Y	3	1	29	1	2	5		26	100

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

Harvest Method Summary 19-Feb-2015 02:19:32PM

Grades: Cruiser Called Alpha Average Line Method

Project: K2_AVCF

Cruiser Est Decay

Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

HV- 1 , p8

Version: 2014.00 IFS build 5885

Filename: AVCF_internal.ccp

Harvest Method : SC - Ground Systems - Clearcut[All Treatment Units : 44.5]

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits Min DBH cm (I) Stump Ht cm (I) Top Dia cm (I) Log Len m Volume and Size Data					12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	22044 20736 465.984 455.419 10.566	20404 19271 433.061 422.495 10.566	1640 1465 32.924 32.924	16997 16120 362.248 353.057 9.190	1670 1573 35.350 35.350	1340 1232 27.687 27.687	397 346 7.776 6.401 1.375	1580 1408 31.650 31.650	60 57 1.273 1.273
Decay Waste(billing) Total Cull (DWB)	00 00 00	1 1 6	1 1 6	1 5 11	1 1 5	6	0 4 8	8	1 5 11	5
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	0.46 0.29 5	0.46 0.29 6	0.39	0.46 0.28 7	0.35	0.92 0.56	0.64	0.40 0.25	0.23
Net Second Growth	8		90.6		93.1	59.6	100.0	82.3		
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	00 00 00 00	2	1	8	1		5		8	
<pre>% Average Slope Cruiser Call Variable</pre>	Longth	14								
#2 Sawlog #3 Sawlog #4 Sawlog	H I J	10 10 4 49	11 4 53		10 2 56	58	31 31 19	64		
#5 Utility #7 Chipper	U Y	34 3	31 1	71 29	31 1	40 2	14 5	36	74 26	100

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

CP- 1 , p9 19-Feb-2015 02:19:32PM

Cutting Permit Summary FIZ: B

Average Line Method

Grades: Cruiser Called Alpha

Cruiser Est Decay PSYU: Nootka Cruiser Est Waste Region: 2 - West Coast

District: 04 - South Island

Licence Number: K2D CP: PRE Project: K2_AVCF Computerized Breakage

Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Compiled by: F Warren And Associates Ltd

Filename: AVCF_internal.ccp

Net Area: [A : 44.5]

Gross Area: [R/W Removed : 4.9][Grand Total : 49.4]

				_						
		Total (Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits										
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	22044	20404	1640	16997	1670	1340	397	1580	60
Net Merchantable	m3	20736	19271	1465	16120	1573	1232	346	1408	57
Net Merch - All	m3/ha	466	433	33	362	35	28	8	32	1
Distribution	용	100	93	7	78	8	6	2	7	0
Decay	용	1	1	1	1		0	8	1	
Waste	용	1	1	4	1		4		4	
Waste(billing)	용	1	1	5	1		4		5	
Breakage	용	4	4	5	4	6	4	5	5	5
Total Cull (DWB)	ક	6	6	11	5	6	8	13	11	5
Stems/Ha (Live & DP)		1020.0	936.2	83.8	794.2	99.8	30.1	12.2	78.3	5.5
Avg DBH (Live & DP)	cm	27.6	27.8	25.4	27.5	27.7	34.2	31.1	25.5	24.5
Snags/Ha		57.2	57.2		57.2					
Avg Snag DBH	cm	12.6	12.6		12.6					
Gross Merch Vol/Tree	m3	0.49	0.49	0.44	0.48	0.38	1.00	0.73	0.45	0.24
Net Merch Vol/Tree	m3	0.46	0.46	0.39	0.46	0.35	0.92	0.64	0.40	0.23
Avg Weight Total Ht	m	26.1	26.4	21.9	26.6	20.2	32.1	24.4	22.1	15.6
Avg Weight Merch Ht	m	21.3	21.8	16.2	21.9	15.9	27.2	20.5	16.4	10.0
Avg 10.0 m Log Net	m3	0.29	0.29	0.25	0.28	0.30	0.56	0.40	0.25	0.24
Avg 10.0 m Log Gross	m3	0.29	0.29	0.27	0.28	0.30	0.59	0.44	0.27	0.24
Avg # of 10.0 m Logs,	/Tree	1.67	1.67	1.66	1.72	1.24	1.71	1.68	1.70	1.00
Net Immature	용	84.2	90.6		93.1	59.6	100.0	82.3		
Net 2nd Growth	용		90.6							
Average Slope	왕	14								
Cruiser Call Variable	Length	Grades %								
#2 Sawlog	Н	10	11		10		31			
#3 Sawlog	I	4	4		2		31			
#4 Sawlog	J	49	53		56	58	19	64		
#5 Utility	U	34	31	71	31	40	14	36	74	
#7 Chipper	Y	3	1	29	1	2	5		26	100
Statistical Summary										
Coeff. of Variation	용	39.3	42.7	252.4	53.0	107.6	110.6	417.5	263.6	679.3
Two Standard Error	용	13.5	14.7	86.6	18.2	36.9	37.9	143.2	90.4	233.0
Number and Type of P.	lots	MP = 34	CP =	: 22						
Number of Potential 7	Trees	137								
Plots/Ha		1.3								
Cruised Trees/Plot		4.4								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

Project: K2_AVCF

Average Line Method Grades: Cruiser Called Alpha

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Decay PSYU: Noo Cruiser Est Waste Region: 2 Computerized Breakage District:

Block Summary

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

Compiled by: F Warren And Associates Ltd
Cruised by: F WARREN AND ASSOCIATES LTD
Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Net Area: Block: (I) - B14:B14, Plots in Block: 21, TUs: [A : 15.3]

Gross Area: [R/W Removed : 2.5][Grand Total : 17.8]

		Total	Conifer	Decid	F	С	Н	В	D	MI
Utilization Limits										
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.
Log Len m					10.0	10.0	10.0	10.0	10.0	10.
Volume and Size Data										
Gross Merchantable	m3	8532	8037	496	5647	834	1275	280	496	
Net Merchantable	m3	8010	7539	471	5339	789	1176	234	471	
Net Merch - All	m3/ha	524	493	31	349	52	77	15	31	
Distribution	ક	100	94	6	67	10	15	3	6	
Decay	용	1	1		1			12		
Waste	ક	1	1		0		4			
Waste(billing)	ે	1	1		0		4			
Breakage	용	4	4	5	4	5	4	5	5	
Total Cull (DWB)	%	6	6	5	5	5	8	16	5	
Stems/Ha (Live & DP)		1136.1	1086.8	49.3	894.0	130.6	30.9	31.2	49.3	
Avg DBH (Live & DP)	cm	27.5	27.4	29.3	25.6	30.2	52.4	28.5	29.3	
Snags/Ha										
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	0.49	0.48	0.66	0.41	0.42	2.69	0.59	0.66	
Net Merch Vol/Tree	m3	0.46	0.45	0.62	0.39	0.40	2.48	0.49	0.62	
Avg Weight Total Ht	m	26.9	27.1	23.4	27.4	18.1	33.1	23.3	23.4	
Avg Weight Merch Ht	m	22.4	22.8	17.6	23.1	13.8	28.0	19.1	17.6	
Avg 10.0 m Log Net	m3	0.30	0.30	0.33	0.25	0.34	0.86	0.34	0.33	
Avg 10.0 m Log Gross	m3	0.30	0.30	0.33	0.26	0.34	0.90	0.39	0.33	
Avg # of 10.0 m Logs	/Tree	1.62	1.60	2.00	1.61	1.24	3.00	1.51	2.00	
Net Immature	용	89.5	95.1		97.1	80.3	100.0	73.9		
Net 2nd Growth	용		95.1							
Average Slope	%	13								
Cruiser Call Variable	Length	Grades %								
#2 Sawlog	H	16	17		17		33			
#3 Sawlog	I	5	5				32			
#4 Sawlog	J	44	48		54	39	20	57		
#5 Utility	U	34	30	86	29	61	15	43	86	
#7 Chipper	Y	1		14					14	
Statistical Summary										
Coeff. of Variation	용	46.7	49.7	183.3	74.7	72.3	61.9	257.4	183.3	
Two Standard Error	8	30.8	32.8	120.9	49.3	47.7	40.8	169.8	120.9	
Number and Type of P	lots	MP =	10 CP =	: 11						
Number of Potential	Trees	44								
Plots/Ha		1.4								
Cruised Trees/Plot		4.8								
Slone % Statistics										

Slope % Statistics

Min= 0, Max= 35, CV=102.1, Std Error of Mean=2.8, 2SE%=46.5

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Project: K2_AVCF

Average Line Method

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage Block Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Net Area: Block: (I) - B15:B15, Plots in Block: 10, TUS: [A: 7.6] Gross Area: [R/W Removed : 0.5][Grand Total : 8.1]

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits		Iocai	CONTLCI	Decia	-	C		D	2	1111
Min DBH cm (I) Stump Ht cm (I) Top Dia cm (I) Log Len m					12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
Volume and Size Data										
Gross Merchantable Net Merchantable Net Merch - All	m3 m3 m3/ha	3489 3277 431	3437 3227 425	52 50 7	2740 2580 339	515 479 63	65 56 7	117 112 15	52 50 7	
Distribution Decay Waste	00 00 00	100 1 1	98 1 1	2	79 1 1	15	2 10	3	2	
Waste(billing) Breakage Total Cull (DWB)	90 90 90	1 5 6	1 5 6	5 5	1 4 6	7 7	4 14	4	5 5	
Stems/Ha (Live & DP) Avg DBH (Live & DP) Snags/Ha	cm	819.4	749.7 31.2	69.6 16.0	574.7 31.5	52.8 45.0	113.8 17.7	8.4 46.0	69.6 16.0	
Avg Snag DBH	cm									
Gross Merch Vol/Tree Net Merch Vol/Tree	m3 m3	0.56 0.53	0.60 0.57	0.10 0.09	0.63 0.59	1.28 1.19	0.07 0.06	1.82 1.75	0.10 0.09	
Avg Weight Total Ht Avg Weight Merch Ht	m m	26.5 22.6	26.7 22.8	14.0	27.4 23.5	25.0 20.3	17.0 9.9	27.0 23.3	14.0	
Avg 10.0 m Log Net Avg 10.0 m Log Gross Avg # of 10.0 m Logs		0.36 0.37 1.53	0.38 0.38 1.58	0.10 0.10 1.00	0.38 0.38 1.63	0.64 0.64 2.00	0.07 0.07 1.00	0.61 0.61 3.00	0.10 0.10 1.00	
Net Immature	% TICC	70.2	71.3	1.00	82.7	2.00	100.0	100.0	1.00	
Net 2nd Growth Average Slope	% %	13	71.3							
Cruiser Call Variable										
#2 Sawlog #3 Sawlog	H I	15 9	16 9		20 11					
#4 Sawlog	J	51	51		45	86		79		
#5 Utility	U	21	22		23	14		21		
#7 Chipper Statistical Summary	Y	4	2	100	1		100		100	
Coeff. of Variation Two Standard Error	%	25.8 26.1	22.5 22.7	316.2 319.9	17.7 17.9	52.7 53.3	158.1 159.9	316.2 319.9	316.2 319.9	
Number and Type of P Number of Potential		MP = 19	5 CP	= 5						
Plots/Ha Cruised Trees/Plot		1.3								
Slope % Statistics			_		0070 70					

Min= 0, Max= 30, CV=109.0, Std Error of Mean=4.3, 2SE%=78.0

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

Project: K2_AVCF

AVCF

BS- 3 , p12

Average Line Method

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Block Summary

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Net Area: Block: (I) - W14:W14, Plots in Block: 6, TUS: [A: 5.8]

		matal	Q: £	Danid	F	a		D	D	MD
Utilization Limits		Total	Conifer	Decid	r	С	Н	В	D	MB
Min DBH cm (I) Stump Ht cm (I) Top Dia cm (I) Log Len m Volume and Size Data					12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
Gross Merchantable	m3	3183	3183		3141	42				
Net Merchantable Net Merch - All	m3 m3/ha	3042 525	3042 525		3003 518	40				
Distribution Decay	% %	100	100		99	1				
Waste	용	0	0		0					
Waste(billing)	용	0	0		0					
Breakage	ક	4	4		4	5				
Total Cull (DWB)	ક	4	4		4	5				
Stems/Ha (Live & DP)		1043.0	1043.0		891.5	151.6				
Avg DBH (Live & DP) Snags/Ha	cm	27.2	27.2		28.9	14.0				
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	0.53	0.53		0.61	0.05				
Net Merch Vol/Tree	m3	0.50	0.50		0.58	0.05				
Avg Weight Total Ht	m	28.9	28.9		29.2	9.9				
Avg Weight Merch Ht	m	23.3	23.3		23.5	4.1				
Avg 10.0 m Log Net	m3	0.27	0.27		0.28	0.05				
Avg 10.0 m Log Gross	m3	0.27	0.27		0.28	0.05				
Avg # of 10.0 m Logs	/Tree	1.97	1.97		2.14	1.00				
Net Immature	용	100.0	100.0		100.0	100.0				
Net 2nd Growth	용		100.0							
Average Slope	ક	17								
Cruiser Call Variable	Length	Grades %								
#2 Sawlog	H	5	5		5					
#3 Sawlog	I	3	3		3					
#4 Sawlog	J	55	55		56					
#5 Utility	U	37	37		36	100				
Statistical Summary										
Coeff. of Variation	용	31.1	31.1		31.8	244.9				
Two Standard Error	ક	35.7	35.7		36.5	281.6				
Number and Type of Pi		MP =	5 CP	= 1						
Number of Potential :	Trees	20								
Plots/Ha		1.0								
Cruised Trees/Plot		4.3								
Slope % Statistics										

Slope % Statistics

Min= 0, Max= 24, CV=51.4, Std Error of Mean=3.5, 2SE%=54.0

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

Project: K2_AVCF

Average Line Method Grades: Cruiser Called Alpha

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste
Computerized Breakage

FIZ: B PSYU: Nootka

Block Summary

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

19-Feb-2015 02:19:32PM

Version: 2014.00 IFS build 5885

Net Area: Block: (I) - W16:W16, Plots in Block: 19, TUs: [A : 15.8] Gross Area: [R/W Removed : 1.9][Grand Total : 17.7]

***********		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits Min DBH cm (I) Stump Ht cm (I) Top Dia cm (I) Log Len m Volume and Size Data					12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
Gross Merchantable	m3	6840	5748	1092	5469	279			1032	60
Net Merchantable	m3	6407	5463	945	5198	265			888	57
Net Merch - All	m3/ha	406	346	60	329	17			56	4
Distribution	%	100	85	15	81	4			14	1
Decay	%	0	0	2	0				2	
Waste	ે	2	1	6	1				7	
Waste(billing)	용	2	1	7	1	_			8	
Breakage	용	4	4	5	4	5			5	5
Total Cull (DWB)	ક	6	5	13	5	5			14	5
Stems/Ha (Live & DP)		995.6	840.8	154.8	767.3	73.5			139.2	15.6
Avg DBH (Live & DP)) cm	26.9	27.1	25.8	27.5	22.6			26.0	24.5
Snags/Ha		161.2 12.6	161.2 12.6		161.2 12.6					
Avg Snag DBH Gross Merch Vol/Tree	cm m3	0.43	0.43	0.45	0.45	0.24			0.47	0.24
Net Merch Vol/Tree	m3	0.43	0.43	0.45	0.43	0.24			0.47	0.24
Avg Weight Total Ht	m	23.5	23.8	21.6	24.0	19.8			22.0	15.6
Avg Weight Merch Ht	m	18.5	18.9	16.0	19.1	15.6			16.4	10.0
Avg 10.0 m Log Net	m3	0.26	0.26	0.24	0.26	0.21			0.24	0.24
Avg 10.0 m Log Gross		0.26	0.26	0.26	0.26	0.21			0.26	0.21
Avg # of 10.0 m Logs		1.67	1.67	1.69	1.71	1.16			1.77	1.00
Net Immature	8 8	77.2	90.5	1.05	90.1	100.0			1.,,	1.00
Net 2nd Growth	%	,,,2	90.5		20.1	100.0				
Average Slope	%	16	30.5							
Cruiser Call Variable	e Length	Grades %								
#2 Sawlog	Н	1	1		1					
#4 Sawlog	J	52	62		61	71				
#5 Utility	U	39	34	67	35	18			72	
#7 Chipper	Y	8	3	33	3	11			28	100
Statistical Summary										
Coeff. of Variation	용	28.1	38.0	225.1	41.7	272.0			240.5	435.9
Two Standard Error	%	15.8	21.3	126.4	23.4	152.7			135.1	244.8
Number and Type of I		MP = 1	.4 CP =	= 5						
Number of Potential	Trees	54								
Plots/Ha		1.2								
Cruised Trees/Plot		4.1								
Clone & Ctatictice										

Slope % Statistics

Min= 0, Max= 45, CV=84.6, Std Error of Mean=3.1, 2SE%=40.8

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

TS-1, p14

Average Line Method

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Type Summary
FIZ: B
PSYU: Nootka

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

VACE

Project: K2_AVCF

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Compiled by: F Warren And Associates Ltd

Net Area: Type 1 (I):Fd (HwCwDrBa), Plots in Type: 21, TUs: [A : 15.3]

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits										
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	8532	8037	496	5647	834	1275	280	496	
Net Merchantable	m3	8010	7539	471	5339	789	1176	234	471	
Net Merch - All	m3/ha	524	493	31	349	52	77	15	31	
Distribution	용	100	94	6	67	10	15	3	6	
Decay	ક	1	1		1			12		
Waste	ક	1	1		0		4			
Waste(billing)	%	1	1		0		4			
Breakage	ક	4	4	5	4	5	4	5	5	
Total Cull (DWB)	ક	6	6	5	5	5	8	16	5	
Stems/Ha (Live & DP)		1136.1	1086.8	49.3	894.0	130.6	30.9	31.2	49.3	
Avg DBH (Live & DP)	cm	27.5	27.4	29.3	25.6	30.2	52.4	28.5	29.3	
Snags/Ha										
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	0.49	0.48	0.66	0.41	0.42	2.69	0.59	0.66	
Net Merch Vol/Tree	m3	0.46	0.45	0.62	0.39	0.40	2.48	0.49	0.62	
Avg Weight Total Ht	m	26.9	27.1	23.4	27.4	18.1	33.1	23.3	23.4	
Avg Weight Merch Ht	m	22.4	22.8	17.6	23.1	13.8	28.0	19.1	17.6	
Avg 10.0 m Log Net	m3	0.30	0.30	0.33	0.25	0.34	0.86	0.34	0.33	
Avg 10.0 m Log Gross	m3	0.30	0.30	0.33	0.26	0.34	0.90	0.39	0.33	
Avg # of 10.0 m Logs	/Tree	1.62	1.60	2.00	1.61	1.24	3.00	1.51	2.00	
Net Immature	8	89.5	95.1		97.1	80.3	100.0	73.9		
Net 2nd Growth	왕		95.1							
Cruiser Call Variable	Length	Grades %								
#2 Sawlog	Н	16	17		17		33			
#3 Sawlog	I	5	5				32			
#4 Sawlog	J	44	48		54	39	20	57		
#5 Utility	Ū	34	30	86	29	61	15	43	86	
#7 Chipper	Y	1		14					14	
Statistical Summary										
Coeff. of Variation	ે	69.9	74.1	316.2	102.1	136.6	212.2	238.9	316.2	
Two Standard Error	ક	30.8	32.8	120.9	49.3	47.7	40.8	169.8	120.9	
Number and Type of P	lots	MP = 1								
Number of Potential		44								
Plots/Ha		1.4								
Cruised Trees/Plot		4.8								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

TS- 2 , p15

Average Line Method

Project: K2_AVCF

Grades: Cruiser Called Alpha

Cruiser Est Decay

Cruiser Est Waste Computerized Breakage Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Net Area: Type 2 (I):Fd (CwBaHwDr), Plots in Type: 10, TUs: [A : 7.6]

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits										
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	3489	3437	52	2740	515	65	117	52	
Net Merchantable	m3	3277	3227	50	2580	479	56	112	50	
Net Merch - All	m3/ha	431	425	7	339	63	7	15	7	
Distribution	용	100	98	2	79	15	2	3	2	
Decay	용	1	1		1		10			
Waste	용	1	1		1					
Waste(billing)	용	1	1		1					
Breakage	용	5	5	5	4	7	4	4	5	
Total Cull (DWB)	용	6	6	5	6	7	14	4	5	
Stems/Ha (Live & DP)		819.4	749.7	69.6	574.7	52.8	113.8	8.4	69.6	
Avg DBH (Live & DP)	cm	30.2	31.2	16.0	31.5	45.0	17.7	46.0	16.0	
Snags/Ha										
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	0.56	0.60	0.10	0.63	1.28	0.07	1.82	0.10	
Net Merch Vol/Tree	m3	0.53	0.57	0.09	0.59	1.19	0.06	1.75	0.09	
Avg Weight Total Ht	m	26.5	26.7	14.0	27.4	25.0	17.0	27.0	14.0	
Avg Weight Merch Ht	m	22.6	22.8	7.3	23.5	20.3	9.9	23.3	7.3	
Avg 10.0 m Log Net	m3	0.36	0.38	0.10	0.38	0.64	0.07	0.61	0.10	
Avg 10.0 m Log Gross	m3	0.37	0.38	0.10	0.38	0.64	0.07	0.61	0.10	
Avg # of 10.0 m Logs,	/Tree	1.53	1.58	1.00	1.63	2.00	1.00	3.00	1.00	
Net Immature	ક	70.2	71.3		82.7		100.0	100.0		
Net 2nd Growth	용		71.3							
Cruiser Call Variable	Length	Grades %								
#2 Sawlog	Н	15	16		20					
#3 Sawlog	I	9	9		11					
#4 Sawlog	J	51	51		45	86		79		
#5 Utility	U	21	22		23	14		21		
#7 Chipper	Y	4	2	100	1		100		100	
Statistical Summary										
Coeff. of Variation	ે	38.9	33.0	223.6	18.5	223.6	223.6	223.6	223.6	
Two Standard Error	용	26.1	22.7	319.9	17.9	53.3	159.9	319.9	319.9	
Number and Type of P.	lots	MP =	5 CP	= 5						
Number of Potential 7	Trees	19								
Plots/Ha		1.3								
Cruised Trees/Plot		4.2								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

TS- 3 , p16

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B PSYU: Nootka

Type Summary

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

AUGE

Compiled by: F Warren And Associates Ltd

Licence Number: K2D CP: PRE Project: K2_AVCF

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Net Area: Type 3 (I):Fd (Cw), Plots in Type: 6, TUs: [A : 5.8]

		_								
		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits										
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	3183	3183		3141	42				
Net Merchantable	m3	3042	3042		3003	40				
Net Merch - All	m3/ha	525	525		518	7				
Distribution	%	100	100		99	1				
Decay	%									
Waste	%	0	0		0					
Waste(billing)	%	0	0		0					
Breakage	%	4	4		4	5				
Total Cull (DWB)	%	4	4		4	5				
Stems/Ha (Live & DP)	Ū	1043.0	1043.0		891.5	151.6				
Avg DBH (Live & DP)	cm	27.2	27.2		28.9	14.0				
Snags/Ha	Citi	27.2	27.2		20.9	11.0				
Avg Snag DBH	cm									
Gross Merch Vol/Tree		0.53	0.53		0.61	0.05				
Net Merch Vol/Tree	m3	0.50	0.50		0.58	0.05				
Avg Weight Total Ht	m	28.9	28.9		29.2	9.9				
Avg Weight Merch Ht	m	23.3	23.3		23.5	4.1				
Avg Weight Merch At	m3	0.27	0.27		0.28	0.05				
Avg 10.0 m Log Gross	m3	0.27	0.27		0.28	0.05				
		1.97	1.97		2.14	1.00				
Avg # of 10.0 m Logs		1.97	100.0		100.0					
Net Immature	%	100.0			100.0	100.0				
Net 2nd Growth	%		100.0							
	_									
Cruiser Call Variable			_		_					
#2 Sawlog	H	5	5		5					
#3 Sawlog	I	3	3		3					
#4 Sawlog	J	55	55		56					
#5 Utility	U	37	37		36	100				
Statistical Summary										
Coeff. of Variation	용	37.0	37.0		37.9	223.6				
Two Standard Error	%	35.7	35.7		36.5	281.6				
Number and Type of P		MP =	5 CP	= 1						
Number of Potential	Trees	20								
Plots/Ha		1.0								
Cruised Trees/Plot		4.3								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright© 1996-2013, Industrial Forestry Service Ltd.

TS- 4 , p17

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Net Area: Type 4 (I):Fd (DrCwMb), Plots in Type: 19, TUs: [A : 15.8]

		Total	Conifer	Decid	F	С	Н	В	D	MB
Utilization Limits		10001	001111101	20014	-	0		_		
Min DBH cm (I)					12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)					10.0	10.0	10.0	10.0	10.0	10.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	6840	5748	1092	5469	279			1032	60
Net Merchantable	m3	6407	5463	945	5198	265			888	57
Net Merch - All	m3/ha	406	346	60	329	17			56	4
Distribution	8	100	85	15	81	4			14	1
Decay	8	0	0	2	0				2	
Waste	8	2	1	6	1				7	
Waste(billing)	%	2	1	7	1				8	
Breakage	용	4	4	5	4	5			5	5
Total Cull (DWB)	e	6	5	13	5	5			14	5
Stems/Ha (Live & DP)		995.6	840.8	154.8	767.3	73.5			139.2	15.6
Avg DBH (Live & DP)	cm	26.9	27.1	25.8	27.5	22.6			26.0	24.5
Snags/Ha		161.2	161.2		161.2					
Avg Snag DBH	cm	12.6	12.6		12.6					
Gross Merch Vol/Tree	m3	0.43	0.43	0.45	0.45	0.24			0.47	0.24
Net Merch Vol/Tree	m3	0.41	0.41	0.39	0.43	0.23			0.40	0.23
Avg Weight Total Ht	m	23.5	23.8	21.6	24.0	19.8			22.0	15.6
Avg Weight Merch Ht	m	18.5	18.9	16.0	19.1	15.6			16.4	10.0
Avg 10.0 m Log Net	m3	0.26	0.26	0.24	0.26	0.21			0.24	0.24
Avg 10.0 m Log Gross	m3	0.26	0.26	0.26	0.26	0.21			0.26	0.24
Avg # of 10.0 m Logs	/Tree	1.67	1.67	1.69	1.71	1.16			1.77	1.00
Net Immature	용	77.2	90.5		90.1	100.0				
Net 2nd Growth	웅		90.5							
Cruiser Call Variable	Length									
#2 Sawlog	H	1	1		1					
#4 Sawlog	J	52	62		61	71				
#5 Utility	U	39	34	67	35	18			72	
#7 Chipper	Y	8	3	33	3	11			28	100
Statistical Summary										
Coeff. of Variation	ક	34.0	47.7	237.2	53.6	229.7			257.7	374.2
Two Standard Error	용	15.8	21.3	126.4	23.4	152.7			135.1	244.8
Number and Type of P		MP = 1	4 CP =	= 5						
Number of Potential	Trees	54								
Plots/Ha		1.2								
Cruised Trees/Plot		4.1								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

Cutting Permit Stand Table (stems/ha)

FIZ: B

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd

CSTND- 1 , p18

Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

[A : 44.5]

Average Line Method

Project: K2_AVCF

	F	C	Н	В	D	MB	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0 10.0	30.0 10.0	30.0 10.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I) Log Len m	10.0	10.0	10.0	10.0 10.0						
DBH III	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										30.9
15	172.0	37.0			11.9		220.9	53.3	26.3	
20	211.7		19.4		11.3		242.4			
25	70.2	28.3			19.6	5.5	123.6	9.8		
30	90.6	18.7		5.4	31.7		146.5	5.3		
35 40	87.0 29.1	2.8			3.8		93.6 29.1	4.9		
45	26.6	9.0		1.4			37.0			
50	14.3	1.5	5.6	1.1			21.4			
55	7.9	2.5	5.0				15.4			
60	10.4						10.4			
65	3.0						3.0			
70	2.4						2.4			
75										
80	1.1						1.1			
85 90										
95										
100										
105										
110										
115										
120										
125										
130										
135 140										
145										
150										
175										
200										
225										
250										
275	=						046 =			
Total	726.2	99.8	30.1	6.9	78.3	5.5	946.7	72.2		
Dead P Dead U	67.9 26.3			5.3				73.3	26.3	
Live U	30.9								20.5	30.9
2110 0	30.5	Ave	rage DBH(c	m) at 5 1	Levels					50.5
12.5 +	28.2	27.7	34.2	32.9	25.5	24.5	28.2	20.0	13.1	
17.5 +	31.3	33.2	34.2	32.9	26.9	24.5	31.2	28.8		
22.5 +	36.5	33.2	52.4	32.9	28.2	24.5	35.5	28.8		
27.5 +	39.0	37.9	52.4	32.9	29.7		38.4	32.1		
32.5 +	42.7	45.8	52.4	46.0	32.9		43.4	35.4		

Licence Number: K2D CP: PRE

Cutting Permit Stock Table (m3/ha) 19-Feb-2015 02:19:32PM

Grades: Cruiser Called Alpha

Computerized Breakage

Cruiser Est Decay Cruiser Est Waste

Region: 2 - West Coast District: 04 - South Island

FIZ: B

PSYU: Nootka

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

CSTCK- 1 , p19

Version: 2014.00 IFS build 5885

Filename: AVCF_internal.ccp

[A : 44.5]

Average Line Method

Project: K2_AVCF

[A · 44.5	J										
		F	С	Н	В	D	MB	Total	DP	DU	LU
Jtilization											
	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
lass											
5 10											
15		9.5	1.6			1.1		12.2	3.1		
20		43.1	1.0	1.3		1.4		45.8	3.1		
25		22.5	8.1	1.3		7.7	1.3	39.5	2.7		
30		51.1	6.5		3.9	18.9	1.5	80.4	1.4		
35		67.7	1.6		3.7	2.5		71.8	3.3		
40		28.5	1.0			2.3		28.5	3.3		
45		36.0	10.8		2.5			49.2			
50		26.2	2.2	14.6	2.5			42.9			
55		16.7	4.7	11.9				33.3			
60		26.7						26.7			
65		10.1						10.1			
70		10.2						10.2			
75											
80		4.9						4.9			
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140 145											
150											
175											
200											
225											
250											
275											
otal		353.1	35.3	27.7	6.4	31.7	1.3	455.4			
ead P		9.2			1.4				10.6		
			Tota	al Volumes	for 7 Le	evels					
7.5 +		343.5	33.8	27.7	6.4	30.5	1.3	443.2	7.4		
2.5 +		300.5	33.8	26.4	6.4	29.1	1.3	397.5	7.4		
27.5 +		278.0	25.7	26.4	6.4	21.4		357.9	4.7		
32.5 +		226.8	19.3	26.4	2.5	2.5		277.6	3.3		
37.5 +		159.2	17.7	26.4	2.5			205.8			
12.5 +		130.7	17.7	26.4	2.5			177.3			
47.5 +		94.8	6.9	26.4				128.1			

Cutting Permit Basal Area Table (m2/ha)

FIZ: B

Grades: Cruiser Called Alpha

Cruiser Est Decay
Cruiser Est Waste
Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

[A : 44.5]

Average Line Method

Project: K2_AVCF

[A : 44.5]										
	F	С	Н	В	D	MB	Total	DP	DU	LU
Jtilization Limits	-	0		2	2	1.2	10001	22	20	
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
lass										
5										
10										0.4
15	2.7	0.6			0.2		3.5	1.0	0.4	
20	6.8		0.5		0.3		7.6			
25	3.4	1.5			1.0	0.3	6.2	0.5		
30	6.4	1.3		0.3	2.1		10.2	0.3		
35	8.5	0.3			0.3		9.1	0.5		
40	3.4	7.4		0 0			3.4			
45	4.2	1.4	1 1	0.2			5.9			
50	2.7	0.3	1.1				4.2			
55	1.8	0.6	1.1				3.5			
60 65	2.9						2.9			
70	1.0 1.0						1.0 1.0			
75	1.0						1.0			
80	0.5						0.5			
85	0.5						0.5			
90										
95										
100										
105										
110										
115										
120										
125										
130										
135										
140										
145										
150										
175										
200										
225										
250										
275	45.0	6.0	0 0	0.6	4 0	0 2	F0 0			
Total	45.3	6.0	2.8	0.6	4.0	0.3	59.0	0 0		
Dead P Dead U	1.9 0.4			0.3				2.3	0.4	
Live U	0.4								0.4	0.4
rive o	0.4	71101	rage Basal	7x02 (m2)	orrold				0.4
12.5 +	45.3	6.0	2.8	0.6	4.0	0.3	59.0	2.3	0.4	
17.5 +	42.6	5.4	2.8	0.6	3.8	0.3	55.4	1.3	0.1	
22.5 +	35.8	5.4	2.3	0.6	3.4	0.3	47.8	1.3		
27.5 +	32.5	3.9	2.3	0.6	2.5	0.5	41.7	0.8		
32.5 +	26.1	2.6	2.3	0.2	0.3		31.5	0.5		

Block Stand Table (stems/ha)

Average Line Method

AVCF

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Licence Number: K2D CP: PRE Project: K2_AVCF

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block: (I) -	B14:B14.	Plots in	Block: 21.	TUS: [A :	15.3	- 1

Utilization Limits	F	C	Н	В	D	MB	Total	DP	DU	LU
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15	364.7						364.7	65.2		
20	169.5						169.5			
25	31.3	68.8					100.1	28.4		
30	76.8	54.5		15.8	49.3		196.3	15.5		
35	42.3						42.3	14.2		
40	34.3						34.3			
45 50	16.7 21.4		16.4				16.7 37.8			
55	12.7	7.3	14.6				34.6			
60	5.1	7.3	14.0				5.1			
65	4.5						4.5			
70	7.0						7.0			
75										
80										
85										
90										
95										
100										
105										
110										
115 120										
125										
130										
135										
140										
145										
150										
175										
200										
225										
250										
275	706 2	120 6	20.0	15.0	40.2		1010 0			
Total	786.3	130.6	30.9	15.8	49.3		1012.9	102.0		
Dead P Dead U	107.8			15.5				123.2		
Live U										
T14C 0		Aver	age DBH(c	m) at 5 T	evels					
12.5 +	26.0	30.2	52.4	28.4	29.3		28.0	23.1		
17.5 +	33.1	30.2	52.4	28.4	29.3		33.3	28.8		
22.5 +	39.4	30.2	52.4	28.4	29.3		36.8	28.8		
27.5 +	41.1	34.0	52.4	28.4	29.3		39.3	32.1		
32.5 +	45.8	57.0	52.4				47.5	35.4		

Block Stand Table (stems/ha)

FIZ: B

Average Line Method

Project: K2_AVCF

AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Cruiser Est Decay

Cruiser Est Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block: (I) - B15:B15, Plots in Block: 10, TUS: [A: 7.6]

DIOCK · (I	1) - 613.61	.J, FIOCS 1	II BIOCK.	10, 108	,. [A .	7.0]					
		F	С	Н	В	D	MB	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10						co c		60.6	100 0		
15 20		103.2		113.8		69.6		69.6 217.0	180.9		
25		58.5		113.0				58.5			
30		48.5						48.5			
35		92.6						92.6			
40		22.0						22.0			
45		17.7	52.8		8.4			78.9			
50		16.4	32.0		0.1			16.4			
55											
60		42.2						42.2			
65		8.6						8.6			
70											
75											
80		6.3						6.3			
85											
90											
95											
100 105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275 Total		393.8	52.8	112 0	8.4	69.6		638.5			
Dead P		180.9	32.0	113.8	0.4	09.0		030.5	180.9		
Dead U		100.9							100.9		
Live U											
			Ave	rage DBH(c	m) at 5 I	Levels					
12.5 +		36.8	45.0	17.7	46.0	16.0		33.4	14.5		
17.5 +		36.8	45.0	17.7	46.0			34.9			
22.5 +		41.2	45.0		46.0			41.9			
27.5 +		44.3	45.0		46.0			44.5			
32.5 +		47.7	45.0		46.0			47.1			

Block Stand Table (stems/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B PSYU: Nootka

Cruiser Est Decay Licence Number: K2D CP: PRE Cruiser Est Waste Project: K2_AVCF Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block: (I) - W14:W14, Plots in Block: 6, TUs: [A: 5.8]

				,							
		F	С	Н	В	D	MB	Total	DP	DU	L
Utilization L Min DBH cm	imits n (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.
Stump Ht cm		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
_	n (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
Log Len m		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
lass											
5											
10											
15			151.6					151.6			
20		475.5						475.5			
25		71.4						71.4			
30		126.0						126.0			
35		92.6						92.6			
40		27.7						27.7			
45		39.6						39.6			
50		31.6						31.6			
55		27.1						27.1			
60											
65 70											
75											
80											
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150 175											
200											
225											
250											
275											
otal		891.5	151.6					1043.0			
ead P											
ead U											
ive U											
			Ave	rage DBH(c	m) at 5 I	Levels					
.2.5 +		28.9	14.0					27.2			
.7.5 +		28.9						28.9			
22.5 +		36.3						36.3			
27.5 +		38.4						38.4			
32.5 +		42.3						42.3			

BSTND- 4 , p24

Block Stand Table (stems/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B PSYU: Nootka 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

AVCF Licence Number: K2D CP: PRE Project: K2_AVCF Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Block: (I) - W16:W16, Plots in Block: 19, TUs: [A: 15.8]

		F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization	Limits		_								
	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
	em (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
-	m (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	111	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											87.0
		131.3	48.6					170 0		74.2	87.0
15			48.0			21 0		179.9		74.2	
20		207.9	12.0			31.8	15.6	239.8			
25		113.0	13.0			55.1	15.6	196.7			
30		111.4				41.4		152.8			
35		125.5	7.8			10.8		144.1			
40		38.6						38.6			
45		35.6						35.6			
50			4.1					4.1			
55											
60		4.0						4.0			
65											
70											
75											
80											
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275											
Total		767.3	73.5			139.2	15.6	995.6			
		707.3	73.5			139.2	13.0	993.0			
Dead P Dead U		74.2								74.2	
										74.2	87.0
Live U		87.0	7,	occ DDII/-	·m \ a+ 「 ¹	[0770] g					87.0
10 5		27 -		age DBH(c	ııı, at 5 l		24 5	26.2		12 1	
12.5 +		27.5	22.6			26.0	24.5	26.9		13.1	
17.5 +		29.5	33.6			26.0	24.5	29.0			
22.5 +		33.1	33.6			27.6	24.5	31.9			
27.5 +		35.5	39.6			30.0		34.9			
32.5 +		38.2	39.6			32.9		38.1			

Project: K2_AVCF

Block Stock Table (m3/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block:	(T) -	B14:B14.	Dlote in	Block:	21	Tile: [Δ:	15 3	1

	,	,		,,							
		F	C	Н	В	D	MB	Total	DP	DU	LU
Utilizatio:											
Min DBH	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
_	cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15		19.4						19.4	4.2		
20		34.4						34.4			
25		9.0	19.0					28.0	8.0		
30		43.6	18.8		11.3	30.8		104.5	4.0		
35		32.7						32.7	9.6		
40		36.0						36.0			
45		26.1		40.2				26.1			
50 55		39.5	12.0	42.3				81.9 75.0			
60		26.7 15.3	13.8	34.5				15.3			
65		14.8						14.8			
70		29.7						29.7			
75		27.7						2,			
80											
85											
90											
95											
100											
105 110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250 275											
Total		327.1	51.6	76.9	11.3	30.8		497.7			
Dead P		21.8	31.0	, 0.5	4.0	30.0		157.7	25.8		
2000 1		21.0	Tot	al Volumes		Levels			23.0		
17.5 +		307.7	51.6	76.9	11.3	30.8		478.3	21.6		
22.5 +		273.4	51.6	76.9	11.3	30.8		443.9	21.6		
27.5 +		264.3	32.6	76.9	11.3	30.8		415.9	13.6		
32.5 +		220.8	13.8	76.9				311.4	9.6		
37.5 +		188.1	13.8	76.9				278.7			
42.5 +		152.1	13.8	76.9				242.7			
47.5 +		126.0	13.8	76.9				216.6			

Project: K2_AVCF

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd

Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Block Stock Table (m3/ha)

Grades: Cruiser Called Alpha Average Line Method

Cruiser Est Decay

Region: 2 - West Coast District: 04 - South Island

FIZ: B PSYU: Nootka Cruiser Est Waste Computerized Breakage

Block: (I) - B15:B15, Plots in Block: 10, TUS: [A: 7.6]

BIOCK · (1	1) - 613.61	.J, FIOCS I	III BIOCK.	10, 102	, A .	7.0					
		F	C	Н	В	D	MB	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH Stump Ht Top Dia	cm (I) cm (I) cm (I) m	12.0 30.0 10.0 10.0	12.0 30.0 10.0								
Log Len DBH Class	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
10 15						6.5		6.5	9.9		
20		15.3		7.4				22.6			
25		19.2						19.2			
30		16.7						16.7			
35 40		66.0						66.0			
45		20.1	63.1		14.7			97.9			
50 55		26.7						26.7			
60		107.9						107.9			
65 70		29.4						29.4			
75		20.4						20.4			
80 85 90		28.4						28.4			
95 100											
105 110											
115 120											
125											
130 135											
140 145											
150											
175 200											
225											
250 275											
Total Dead P		329.6 9.9	63.1	7.4	14.7	6.5		421.3	9.9		
			Tota	al Volumes	for 7 L	evels					
17.5 +		329.6	63.1	7.4	14.7			414.8			
22.5 +		314.4	63.1		14.7			392.1			
27.5 +		295.1	63.1		14.7			372.9			
32.5 + 37.5 +		278.5 212.5	63.1 63.1		14.7 14.7			356.2 290.3			
42.5 +		212.5	63.1		14.7			290.3			
47.5 +		192.3						192.3			

Project: K2_AVCF

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Block Stock Table (m3/ha)

FIZ: B

Grades: Cruiser Called Alpha Average Line Method

Cruiser Est Decay

Region: 2 - West Coast District: 04 - South Island

PSYU: Nootka Cruiser Est Waste Computerized Breakage

Block: (I) - W14:W14, Plots in Block: 6, TUs: [A: 5.8]

		F	C	Н	В	D	MB	Total	DP	DU	LU
Utilization	Limits										
Stump Ht	cm (I) cm (I) cm (I) m	12.0 30.0 10.0 10.0									
Class											
5											
10											
15			6.8					6.8			
20		115.2						115.2			
25		28.2						28.2			
30		83.3						83.3			
35		85.8						85.8			
40		28.8						28.8			
45		57.1						57.1			
50		61.6						61.6			
55 60		57.5						57.5			
65											
70											
75											
80											
85											
90											
95											
100											
105											
110											
115 120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275 Total		517.7	6.8					524.5			
Dead P		51/./	0.8					524.5			
Dead P			Tota	al Volumes	for 7 L	avele					
17.5 +		517.7	1000	- vorumer	. тот , пе			517.7			
22.5 +		402.5						402.5			
27.5 +		374.3						374.3			
32.5 +		291.0						291.0			
37.5 +		205.1						205.1			
42.5 +		176.3						176.3			
47.5 +		119.1						119.1			

Block Stock Table (m3/ha) Grades: Cruiser Called Alpha

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Cruiser Est Decay

Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Block: ((T) - W16:W16	Plots in Block: 19	TUs: [A : 15.8]

		F C	Н	В	D	MB	Total	DP	DU	LU
Stump Ht co Top Dia co	Limits m (I) 12 m (I) 30 m (I) 10 m 10	.0 30.0 .0 10.0	30.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0	12.0 30.0 10.0 10.0
5 10 15	٥	.0 1.9					9.8			
20 25	38 35	.5 .0 4.3			4.0 21.7	3.6	42.5 64.6			
30 35 40 45	63 95 34 45	.7 4.5 .7			23.4		86.6 107.3 34.7 45.3			
50 55 60		6.1					6.1			
65 70 75	٥	. 0					0.0			
80 85 90										
95 100 105										
110 115 120										
125 130 135										
140 145 150										
175 200 225										
250 275 Total	329	.0 16.8			56.2	3.6	405.5			
Dead P		Т	otal Volum	nes for 7	Levels					
17.5 + 22.5 + 27.5 +	321 282 247	.0 14.9 .5 14.9			56.2 52.2 30.5	3.6 3.6	395.7 353.3 288.6			
32.5 + 37.5 + 42.5 +	184 88 54	.3 10.6 .7 6.1			7.1		202.0 94.7 60.0			
47.5 +		.6 6.1					14.7			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

Project: K2_AVCF

BBASL- 1 , p29

Block Basal Area Table (m2/ha)

FIZ: B

PSYU: Nootka

Average Line Method

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste

Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block: (I) - B14:B14, Plots in Block: 21, TUS: [A: 15.3]

F C H B D MB Total DP DU Utilization Limits Min DBH cm (I) 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	LU 12.0
Min DBH cm (I) 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	
Stump Ht cm (I) 30.0	
Top Dia cm (I) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	
Log Len m 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	30.0
DBH	10.0 10.0
	10.0
5	
10	
15 5.6 1.4	
20 5.6 5.6	
25 1.4 3.7 5.1 1.4 30 5.6 3.7 1.0 3.3 13.6 1.0	
35 4.2 1.4	
40 4.2	
45 2.8	
50 4.2 3.3 7.5	
55 2.8 1.9 3.3 8.0	
60 1.4 1.4 65 1.4 1.4	
70 2.8 2.8	
75	
80	
85	
90	
95 100	
105	
110	
115	
_ 120	
125	
130 135	
140	
145	
150	
175	
200	
225	
250 275	
Total 41.8 9.3 6.7 1.0 3.3 62.2	
Dead P 4.2 1.0 5.2	
Dead U	
Live U	
Average Basal Area (m2) at 5 Levels	
12.5 + 41.8 9.3 6.7 1.0 3.3 62.2 5.2 17.5 + 36.2 9.3 6.7 1.0 3.3 56.6 3.8	
22.5 + 30.7 9.3 6.7 1.0 3.3 51.0 3.8	
27.5 + 29.3 5.6 6.7 1.0 3.3 45.9 2.4	
32.5 + 23.7 1.9 6.7 32.2 1.4	

Project: K2_AVCF

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Version: 2014.00 IFS build 5885

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Block Basal Area Table (m2/ha)

FIZ: B

PSYU: Nootka

Average Line Method

Grades: Cruiser Called Alpha

Cruiser Est Decay

Cruiser Est Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Block: (I) - B15:B15, Plots in Block: 10, TUS: [A: 7.6]

				,							
		F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization											
	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
_	cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15						1.4		1.4	3.0		
20		3.0		2.8				5.8			
25		3.0						3.0			
30		3.0						3.0			
35		9.0						9.0			
40											
45		3.0	8.4		1.4			12.8			
50		3.0						3.0			
55 60		11.9						11.9			
65		3.0						3.0			
70		3.0						3.0			
75											
80		3.0						3.0			
85											
90											
95											
100											
105											
110											
115 120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250 275											
Total		41.8	8.4	2.8	1.4	1.4		55.8			
Dead P		3.0	0.1	2.0	1.1	1.1		33.0	3.0		
Dead U		3.0							3.0		
Live U											
			Ave	rage Basal	Area (1	n2) at 5 L	evels				
12.5 +		41.8	8.4	2.8	1.4	1.4		55.8	3.0		
17.5 +		41.8	8.4	2.8	1.4			54.4			
22.5 +		38.8	8.4		1.4			48.6			
27.5 +		35.8	8.4		1.4			45.6			
32.5 +		32.9	8.4		1.4			42.7			

Project: K2_AVCF

AVCF

Block Basal Area Table (m2/ha)

FIZ: B

PSYU: Nootka

Average Line Method Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Block: (I) - W14:W14, Plots in Block: 6, TUS: [A: 5.8]

		F	С	H	В	D	MB	Total	DP	DU	LU
tilizatio Min DBH	n Limits cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
lass											
5											
10 15			2.3					2.3			
20		15.4	2.3					15.4			
25		3.1						3.1			
30		9.2						9.2			
35		9.2						9.2			
40		3.1						3.1			
45		6.1						6.1			
50		6.1						6.1			
55		6.1						6.1			
60											
65 70											
75											
80											
85											
90											
95											
100											
105											
110 115											
120											
125											
130											
135											
140											
145											
150											
175 200											
225											
250											
275											
otal		58.3	2.3					60.7			
ead P											
ead U											
ive U											
2 5		F0 2		age Basal	Area (m2	2) at 5 Le	evels	66 5			
2.5 +		58.3	2.3					60.7			
7.5 + 2.5 +		58.3 43.0						58.3 43.0			
7.5 +		39.9						39.9			
		J / • /						J / • /			

Project: K2_AVCF

BBASL- 4 , p32

Block Basal Area Table (m2/ha)

Average Line Method Grades: Cruiser Called Alpha

Grades: Cruiser Called Alpha FIZ: B
Cruiser Est Decay PSYU: Nootka

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Block: (I) - W16:W16, Plots in Block: 19, TUS: [A: 15.8]

	,		,							
	F	C	Н	В	D	MB	Total	DP	DU	LU
Utilization Limi										
Min DBH cm (I		12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m DBH	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										1.0
15	2.2	0.7					3.0		1.0	
20	6.7				0.9		7.6			
25	5.6	0.7			2.8	0.7	9.8			
30	7.8				2.8		10.6			
35	12.3	0.7			0.9		13.9			
40	4.5						4.5			
45 50	5.6	0.7					5.6 0.7			
55		0.7					0.7			
60	1.1						1.1			
65										
70										
75										
80										
85										
90										
95 100										
105										
110										
115										
120										
125										
130										
135										
140										
145 150										
175										
200										
225										
250										
275										
Total	45.7	2.9			7.4	0.7	56.7			
Dead P										
Dead U	1.0								1.0	1 0
Live U	1.0	7	awaga Daga	1 7200 /	m2\ a+ E :	r orrola				1.0
12.5 +	45.7	2.9	erage Basa	т агеа (m_2) at 5. 7.4	Leveis 0.7	56.7		1.0	
17.5 +	43.5	2.2			7.4	0.7	53.8		1.0	
22.5 +	36.8	2.2			6.4	0.7	46.2			
27.5 +	31.2	1.5			3.7		36.4			
32.5 +	23.4	1.5			0.9		25.8			

Type Stand Table (stems/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Licence Number: K2D CP: PRE Project: K2_AVCF

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Compiled by: F Warren And Associates Ltd

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Type 1 (I):Fd (HwCwDrBa), Plots in Type: 21, TUs: [A : 15.3]

-71 (-, (,,									
	F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (I) Log Len m	10.0 10.0	10.0 10.0	10.0	10.0	10.0 10.0	10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0
Log Len m DBH	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15	364.7						364.7	65.2		
20	169.5						169.5			
25	31.3	68.8					100.1	28.4		
30	76.8	54.5		15.8	49.3		196.3	15.5		
35	42.3						42.3	14.2		
40	34.3						34.3			
45 50	16.7		16.4				16.7			
50	21.4 12.7	7.3	16.4				37.8 34.6			
60	5.1	1.3	14.0				5.1			
65	4.5						4.5			
70	7.0						7.0			
75	,						,			
80										
85										
90										
95										
100										
105										
110										
115 120										
125										
130										
135										
140										
145										
150										
175										
200										
225										
250										
275	706 2	120 6	20.0	1 . 0	40.2		1010 0			
Total Dead P	786.3 107.8	130.6	30.9	15.8 15.5	49.3		1012.9	123.2		
Dead U	107.0			15.5				123.2		
Live U										
21.0 0		Avei	rage DBH(c	m) at 5 1	Levels					
12.5 +	26.0	30.2	52.4	28.4	29.3		28.0	23.1		
17.5 +	33.1	30.2	52.4	28.4	29.3		33.3	28.8		
22.5 +	39.4	30.2	52.4	28.4	29.3		36.8	28.8		
27.5 +	41.1	34.0	52.4	28.4	29.3		39.3	32.1		
32.5 +	45.8	57.0	52.4				47.5	35.4		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage, CruiseComp Copyright@ 1996-2013, Industrial Forestry Service Ltd.

Type Stand Table (stems/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B PSYU: Nootka 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Project: K2_AVCF

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Type 2 (I):Fd (CwBaHwDr), Plots in Type: 10, TUs: [A : 7.6]

Type Z (1	i).ru (Cwba	IIIWDI / , FIC	ocs in Ty	pe. 10, 10	b. LA.	7.0]					
		F	C	Н	В	D	MB	Total	DP	DU	LU
Utilizatio		10.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Min DBH Stump Ht	cm (I)	12.0 30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m (1)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH		10.0	20.0	20.0	20.0	20.0	20.0	20.0	10.0	10.0	20.0
Class											
5											
10											
15						69.6		69.6	180.9		
20		103.2		113.8				217.0			
25 30		58.5 48.5						58.5 48.5			
35		92.6						92.6			
40		92.0						92.0			
45		17.7	52.8		8.4			78.9			
50		16.4						16.4			
55											
60		42.2						42.2			
65		8.6						8.6			
70											
75		6.3						6.3			
80 85		6.3						6.3			
90											
95											
100											
105											
110											
115											
120											
125 130											
135											
140											
145											
150											
175											
200											
225											
250 275											
Total		393.8	52.8	113.8	8.4	69.6		638.5			
Dead P		180.9	32.0	113.0	0.4	09.0		030.3	180.9		
Dead U		100.5							100.9		
Live U											
			Ave	rage DBH(c	cm) at 5 I	Levels					
12.5 +		36.8	45.0	17.7	46.0	16.0		33.4	14.5		
17.5 +		36.8	45.0	17.7	46.0			34.9			
22.5 +		41.2	45.0		46.0			41.9			
27.5 + 32.5 +		44.3 47.7	45.0 45.0		46.0 46.0			44.5 47.1			
34.5 T		4/./	±5.0		40.0			4/.I			

Type Stand Table (stems/ha)

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Cruiser Est Decay

Coi

Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Type 3 (I):Fd (Cw), Plots in Type: 6, TUs: [A : 5.8]

Statistical Limits			_	~		_	_					
Min DBH cm (T) 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	Heiligation 1	Timita	F	С	H	В	D	MB	Total	DP	DU	LU
Stump Ht cm (I) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.			12 0	12 0	12 0	12 0	12 0	12 0	12 0	12 0	12 0	12 0
Top Dia cm (T) 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.												
Dept												
Class 5 10 15 10 15 17 20 475.5 25 71.4 27 30 126.0 35 92.6 40 27.7 45 39.6 39.6 50 31.6 55 27.1 45 39.6 31.6 55 27.1 45 39.6 31.6 55 37.1 40 37.1 50 38.6 39.6 39.6 39.6 39.6 39.6 39.6 39.6 39												
Class 5 10 15 15 15 16 115 15 16 115 16 115 16 115 16 115 16 17 17 18 17 18 17 18 18 19 18 19 18 19 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18			10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
5												
10 15												
155												
20 475.5				151.6					151.6			
25 71.4 71.4 71.4 35 30 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 126.0 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.7 127.1			475.5									
30												
35 92.6 40 27.7 45 39.6 39.6 50 31.6 51 27.1 50 31.6 52 27.1 50 31.6 55 27.1 50 31.6 5												
40 27.7 27.7 39.6 39.6 39.6 50 31.6 50 31.6 55 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1												
45 39.6 39.6 50 31.6 55 27.1 31.6 55 27.1 31.6 55 27.1 327.1 327.1 327.1 327.1 327.1 328 327.5 328.1 3												
50												
60 65 70 77 78 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
60 65 70 77 78 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	55		27.1						27.1			
70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 36.3 27.5 + 38.4 38.4	60											
75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	65											
80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	70											
85 90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	75											
90 95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	80											
95 100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4	85											
100 105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 36.3 27.5 + 38.4												
105 110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 27.5 + 38.4 38.4												
110 115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
115 120 125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
120 125 130 135 140 1445 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 36.3 36.3 37.5 + 38.4												
125 130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
130 135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
135 140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
140 145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 22.5 + 36.3 27.5 + 38.4 38.4												
145 150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 22.5 + 36.3 27.5 + 38.4 38.4												
150 175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 22.5 + 36.3 27.5 + 36.3 27.5 + 38.4 38.4												
175 200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
200 225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
225 250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
250 275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
275 Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
Total 891.5 151.6 1043.0 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4			891 5	151 6					1043 0			
Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4			0,1.5	131.0					1013.0			
Live U Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
Average DBH(cm) at 5 Levels 12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4												
12.5 + 28.9 14.0 27.2 17.5 + 28.9 28.9 22.5 + 36.3 36.3 27.5 + 38.4 38.4				Aver	age DBH(c	m) at 5 I	Levels					
17.5 + 28.9 22.5 + 36.3 27.5 + 38.4	12.5 +		28.9		J(0	,			27.2			
22.5 + 36.3 27.5 + 38.4 38.4												
27.5 + 38.4												
32.5 + 42.3 42.3												
	32.5 +		42.3						42.3			

Type Stand Table (stems/ha)

Average Line Method

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste
Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Type 4	(T):Fd	(DrCwMb)	Plots	in Type:	19 TIIs:	[A : 15.8	1
TAbe 4	(I)·FU	(DICWIND),	PIULS	III Iype.	17, 1US.	[A · 13.0	1

			a	**	70		MD	m - t - 1	22	DII	
Utilization	. Timita	F	С	Н	В	D	MB	Total	DP	DU	LU
Min DBH	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht	cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m (1)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	111	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											87.0
15		131.3	48.6					179.9		74.2	0,10
20		207.9				31.8		239.8			
25		113.0	13.0			55.1	15.6	196.7			
30		111.4				41.4		152.8			
35		125.5	7.8			10.8		144.1			
40		38.6						38.6			
45		35.6						35.6			
50			4.1					4.1			
55											
60		4.0						4.0			
65											
70											
75											
80											
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150 175											
200											
225											
250											
275											
Total		767.3	73.5			139.2	15.6	995.6			
Dead P		707.5	73.3			137.2	13.0	223.0			
Dead U		74.2								74.2	
Live U		87.0									87.0
		• •	Aver	age DBH(cm) at 5 I	Levels					3
12.5 +		27.5	22.6		, 5 -	26.0	24.5	26.9		13.1	
17.5 +		29.5	33.6			26.0	24.5	29.0			
22.5 +		33.1	33.6			27.6	24.5	31.9			
27.5 +		35.5	39.6			30.0		34.9			
32.5 +		38.2	39.6			32.9		38.1			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Type Stock Table (m3/ha)

Average Line Method

Project: K2_AVCF

AVCF Licence Number: K2D CP: PRE Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste Computerized Breakage FIZ: B
PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

19-Feb-2015 02:19:32PM

Version: 2014.00 IFS build 5885

Type 1 (I):Fd (HwCwDrBa), Plots in Type: 21, TUs: [A : 15.3]

	F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization Lim		J		2	_		10041			
Min DBH cm (,	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (Log Len m	1) 10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0	10.0 10.0
DBH III	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10 15	19.4						19.4	4.2		
20	34.4						34.4	4.2		
25	9.0	19.0					28.0	8.0		
30	43.6	18.8		11.3	30.8		104.5	4.0		
35	32.7						32.7	9.6		
40	36.0						36.0			
45 50	26.1 39.5		42.3				26.1 81.9			
55	26.7	13.8	34.5				75.0			
60	15.3						15.3			
65	14.8						14.8			
70 75	29.7						29.7			
80										
85										
90										
95 100										
105										
110										
115										
120										
125 130										
135										
140										
145										
150 175										
200										
225										
250										
275 Total	327.1	51.6	76.9	11.3	30.8		497.7			
Dead P	21.8	51.0	70.5	4.0	50.0		101.1	25.8		
			al Volumes	s for 7 L						
17.5 +	307.7	51.6	76.9	11.3	30.8		478.3	21.6		
22.5 + 27.5 +	273.4 264.3	51.6 32.6	76.9 76.9	11.3 11.3	30.8 30.8		443.9 415.9	21.6 13.6		
32.5 +	220.8	13.8	76.9	11.3	30.0		311.4	9.6		
37.5 +	188.1	13.8	76.9				278.7			
42.5 +	152.1	13.8	76.9				242.7			
47.5 +	126.0	13.8	76.9				216.6			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Type Stock Table (m3/ha)

Average Line Method

Average Line Method

Project: K2_AVCF

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste
Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

19-Feb-2015 02:19:32PM

Version: 2014.00 IFS build 5885

Type 2 (I):Fd (CwBaHwDr), Plots in Type: 10, TUs: [A : 7.6]

Type Z (I	.) · Fu (CWBe	allwDI), FIC	JCB III IYE	pe. 10, 10)5. [A .	7.0					
		F	С	Н	В	D	MB	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht	cm (I)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15						6.5		6.5	9.9		
20		15.3		7.4				22.6			
25		19.2						19.2			
30		16.7						16.7			
35		66.0						66.0			
40											
45		20.1	63.1		14.7			97.9			
50		26.7						26.7			
55											
60		107.9						107.9			
65		29.4						29.4			
70											
75											
80		28.4						28.4			
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275											
Total		329.6	63.1	7.4	14.7	6.5		421.3			
Dead P		9.9							9.9		
			Tota	al Volumes	s for 7 Le	evels					
17.5 +		329.6	63.1	7.4	14.7			414.8			
22.5 +		314.4	63.1		14.7			392.1			
27.5 +		295.1	63.1		14.7			372.9			
32.5 +		278.5	63.1		14.7			356.2			
37.5 +		212.5	63.1		14.7			290.3			
42.5 +		212.5	63.1		14.7			290.3			
47.5 +		192.3						192.3			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m ***
FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Double Sampling Factor Applied, Damage,
CruiseComp Copyright® 1996-2013, Industrial Forestry Service Ltd.

Licence Number: K2D CP: PRE

TSTCK- 3 , p39

Type Stock Table (m3/ha)

Average Line Method AVCF

Project: K2_AVCF

Grades: Cruiser Called Alpha

Computerized Breakage

Cruiser Est Decay Cruiser Est Waste FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Type 3 ()	I):Fd (Cw),	Plots in Type:	6, TUs:	[A : 5.8]

-71-0 (-)	, (, ,	,	-71-								
		F	С	Н	В	D	MB	Total	DP	DU	L
Utilizatior Min DBH	n Limits cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
Log Len	m (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
lass											
5											
10											
15			6.8					6.8			
20		115.2						115.2			
25		28.2						28.2			
30		83.3						83.3			
35		85.8						85.8			
40		28.8						28.8			
45		57.1						57.1			
50		61.6						61.6			
55		57.5						57.5			
60 65											
70											
75											
80											
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275											
otal		517.7	6.8					524.5			
ead P											
			Tota	al Volumes	s for 7 Le	evels					
L7.5 +		517.7						517.7			
22.5 +		402.5						402.5			
27.5 +		374.3						374.3			
32.5 +		291.0						291.0			
37.5 +		205.1						205.1			
12.5 + 17.5 +		176.3 119.1						176.3 119.1			
17.5 7		119.1						112.I			

Licence Number: K2D CP: PRE

TSTCK- 4 , p40

Type Stock Table (m3/ha)

Average Line Method

Project: K2_AVCF

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Type 4	(T):Fd	(DrCwMh)	Plots	in Type:	19	TIIs:	Δ:	15 8	1
TABE 4	(I) • F G	(DICWIND),	FIULD	TII TYPE.	エン	1000		10.0	J

	F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I) Top Dia cm (I)	30.0 10.0									
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10 15	8.0	1.9					9.8			
20	38.5	1.9			4.0		42.5			
25	35.0	4.3			21.7	3.6	64.6			
30	63.2				23.4		86.6			
35	95.7	4.5			7.1		107.3			
40 45	34.7 45.3						34.7 45.3			
50	13.3	6.1					6.1			
55										
60	8.6						8.6			
65 70										
75										
80										
85										
90 95										
100										
105										
110										
115 120										
125										
130										
135										
140 145										
150										
175										
200										
225 250										
275										
Total	329.0	16.8			56.2	3.6	405.5			
Dead P										
17.5 +	321.0		l Volumes	s for 7 Le		3.6	395.7			
17.5 + 22.5 +	282.5	14.9 14.9			56.2 52.2	3.6	353.3			
27.5 +	247.5	10.6			30.5	3.0	288.6			
32.5 +	184.3	10.6			7.1		202.0			
37.5 +	88.7	6.1					94.7			
42.5 + 47.5 +	54.0 8.6	6.1 6.1					60.0 14.7			
17.5	0.0	0.1					11./			

Licence Number: K2D CP: PRE

Average Line Method

Project: K2_AVCF

TBASL- 1 , p41 Type Basal Area Table (m2/ha) 19-Feb-2015 02:19:32PM

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Cruiser Est Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

Compiled by: F Warren And Associates Ltd

Filename: AVCF_internal.ccp

Type 1 (I):Fd (HwCwDrBa), Plots in Type: 21, TUs: [A : 15.3]

		F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization	Limits		-							-	
	cm (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht o		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
_	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
	m (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15		5.6						5.6	1.4		
20		5.6						5.6			
25		1.4	3.7					5.1	1.4		
30		5.6	3.7		1.0	3.3		13.6	1.0		
35		4.2						4.2	1.4		
40		4.2						4.2			
45		2.8						2.8			
50		4.2		3.3				7.5			
55		2.8	1.9	3.3				8.0			
60		1.4						1.4			
65		1.4						1.4			
70		2.8						2.8			
75		2.0						2.0			
80											
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275											
Total		41.8	9.3	6.7	1.0	3.3		62.2			
Dead P		4.2			1.0				5.2		
Dead U					2.0				3.2		
Live U											
			Avera	ge Basal	Area (m2)	at 5 T.es	zels				
12.5 +		41.8	9.3	6.7	1.0	3.3	, C _ D	62.2	5.2		
17.5 +		36.2	9.3	6.7	1.0	3.3		56.6	3.8		
22.5 +		30.7	9.3	6.7	1.0	3.3		51.0	3.8		
27.5 +		29.3	5.6	6.7	1.0	3.3		45.9	2.4		
32.5 +		23.7	1.9	6.7				32.2	1.4		

Project: K2_AVCF

Type Basal Area Table (m2/ha)

FIZ: B

Grades: Cruiser Called Alpha Average Line Method

Cruiser Est Decay

PSYU: Nootka Cruiser Est Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Type 2 (I):Fd (CwBaHwDr), Plots in Type: 10, TUs: [A : 7.6]

		F	С	Н	В	D	MB	Total	DP	DU	L
tilization		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
	m (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.
Stump Ht c		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
	m (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH											
lass											
5											
10											
15						1.4		1.4	3.0		
20		3.0		2.8				5.8			
25		3.0						3.0			
30		3.0						3.0			
35		9.0						9.0			
40											
45		3.0	8.4		1.4			12.8			
50		3.0						3.0			
55											
60		11.9						11.9			
65		3.0						3.0			
70											
75											
80		3.0						3.0			
85											
90											
95											
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275											
otal		41.8	8.4	2.8	1.4	1.4		55.8			
ead P		3.0							3.0		
ead U											
ive U											
				rage Basal			evels				
2.5 +		41.8	8.4	2.8	1.4	1.4		55.8	3.0		
7.5 +		41.8	8.4	2.8	1.4			54.4			
2.5 +		38.8	8.4		1.4			48.6			
7.5 +		35.8	8.4		1.4			45.6			
2.5 +		32.9	8.4		1.4			42.7			

TBASL- 3 , p43

Type Basal Area Table (m2/ha)

Average Line Method

Grades: Cruiser Called Alpha

FIZ: B Cruiser Est Decay PSYU: Nootka

Licence Number: K2D CP: PRE Project: K2_AVCF

Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Type 3 (I):Fd (Cw), Plots in Type: 6, TUs: [A : 5.8]

1700 3 (1	1) · 1 · 1 · (· 0 · 0 ·) /	, FIOCS III	1750.07	100 [11	. 5.0]						
		F	C	Н	В	D	MB	Total	DP	DU	LU
Utilizatio Min DBH	on Limits om (I)	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (I)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5 10											
15			2.3					2.3			
20		15.4	2.5					15.4			
25		3.1						3.1			
30		9.2						9.2			
35		9.2						9.2			
40 45		3.1 6.1						3.1			
50		6.1						6.1 6.1			
55		6.1						6.1			
60											
65											
70											
75											
80 85											
90											
95											
100											
105											
110											
115 120											
125											
130											
135											
140											
145											
150 175											
200											
225											
250											
275											
Total		58.3	2.3					60.7			
Dead P											
Dead U Live U											
HIVE 0			Ave	rage Basal	Area (m2	!) at 5 Te	evels				
12.5 +		58.3	2.3	.agc Dabas	- 111 CG (III2	., ас 5 дс		60.7			
17.5 +		58.3						58.3			
22.5 +		43.0						43.0			
27.5 +		39.9						39.9			
32.5 +		30.7						30.7			

Project: K2_AVCF

Type Basal Area Table (m2/ha)

FIZ: B

PSYU: Nootka

Average Line Method Grades: Cruiser Called Alpha

Cruiser Est Decay

Cruiser Est Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Version: 2014.00 IFS build 5885

Type 4 (I):Fd (DrCwMb), Plots in Type: 19, TUs: [A : 15.8]

	F	С	Н	В	D	MB	Total	DP	DU	LU
Utilization Lim	its									
Min DBH cm (I) 12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0
Stump Ht cm (I) 30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										1.0
15	2.2	0.7					3.0		1.0	1.0
20	6.7	0.,			0.9		7.6			
25	5.6	0.7			2.8	0.7	9.8			
30	7.8	0.7			2.8	0.7	10.6			
35	12.3	0.7			0.9		13.9			
40	4.5	0.7			0.5		4.5			
45	5.6						5.6			
50	3.0	0.7					0.7			
55		0.7					0.7			
60	1.1						1.1			
65	1.1						1.1			
70										
75										
80										
85										
90										
95										
100										
105										
110										
115										
120										
125										
130 135										
140										
145										
150 175										
200										
225										
250 275										
	45.7	2 0			7 1	0.7	F.C. 7			
Total	45.7	2.9			7.4	0.7	56.7			
Dead P	1 0								1 0	
Dead U	1.0								1.0	1 0
Live U	1.0	71	amaga Da	0] 72000 /	m2\ a+					1.0
10 E .	45.7	AVE	erage Bas	aı Area (m2) at 5 I		F 6 7		1.0	
12.5 + 17.5 +	43.5	2.9 2.2			7.4 7.4	0.7 0.7	56.7 53.8		1.0	
	36.8	2.2			6.4	0.7	46.2			
22.5 +						0.7				
27.5 +	31.2	1.5			3.7		36.4			
32.5 +	23.4	1.5			0.9		25.8			

SLOPE- 1 , p45

Field Data & Slope Averages

FIZ: B

PSYU: Nootka

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha

Cruiser Est Decay Cruiser Est Waste

Region: 2 - West Coast District: 04 - South Island Computerized Breakage

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Block	Strp	Plot	Туре	Meth	Slp%	Strp	Plot	Туре	Meth	Slp%	Str	p Plo	ot Ty	ype	Meth	Slp%	Strp	Plot	Type	Meth S	Slp%
B14: B14		1 5 9	1 1 1	SC SC SC	18		2 6 10	1 1 1	SC SC SC			1	3 7 11	1 1 1	SC SC SC	28 27 23	E	4 8 2	1 1 1	SC SC SC	18 20 0
	E S W	5 4 10	1 1 1	SC SC SC	0 0 0	E S	7 6	1	SC SC	0		E 5	8 9	1	SC SC	0	n SE	1	1 1	SC SC	0
Summary:	Total % Slope:	267		No.	of Plots:	21		Weig	ghted	Average	% Slop	pe: 1	12.7		Ar	ithmetic	Averag	e % %	Slope:	12.7	
B15: B15	S	1 5 2	2 2 2	SC	17	E W	2 3 1		SC]	3	3 4	2 2	SC SC	28 0	E	4 5	2 2	SC SC	30
Summary:	Total % Slope:	126		No.	of Plots:	10		Weig	ghted	Average	% Slop	pe: 1	12.6		Ar	ithmetic	Averag	e % \$	Slope:	12.6	
W14: W14		1 5	3	SC SC		N	2 2			19 0			3	3	SC	18		4	3	SC	22
Summary:	Total % Slope:	100		No.	of Plots:	6		Wei	ghted	Average	% Slop	pe: 1	16.7		Ar	rithmetic	Averag	e % \$	Slope:	16.7	
W16: W16		1 5 9	4 4 4	SC SC	18 45		2 6 10	4 4	SC SC	15 30			3 7 11	4 4 4	SC SC SC	25 8 32		4 8 12		SC SC SC	11 15 15
	NE	13 2	4	SC SC	15 0	S	14 6	4 4		35 0		₹ V	3 4	4	SC SC	0 0	N	11	4	SC	0
Summary:	Total % Slope:	308		No.	of Plots:	19		Weig	ghted	Average	% Slop	pe: 1	16.2		Ar	ithmetic	Averag	e % \$	Slope:	16.2	

SLOPE- 2 , p46 s Slope Averages 19-Feb-2015 02:19:32PM

Field Data & Slope Averages
Grades: Cruiser Called Alpha FIZ: B

Average Line Method

Project: K2_AVCF

AVCF Licence Number: K2D CP: PRE Cruiser Est Decay Cruiser Est Waste

Computerized Breakage

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Harvest Method Summary

Harvest Method	Total % Slope	No of Plots	Avg % Weighted Slope	Avg % Arithmetic Slope
SC	801	56	14.5	
Total	801	56	14.5	14.3

Mature Blocks: (cm)

Immature Blocks:(cm)

PLSUM- 1 , p47 Plot Summary

FIZ: B

PSYU: Nootka

Grades: Cruiser Called Alpha Average Line Method

Cruiser Est Decay Licence Number: K2D CP: PRE Cruiser Est Waste Project: K2_AVCF

Region: 2 - West Coast Computerized Breakage

30

Utilization Levels: Minimum DBH

17.5

12.0

15.0

10.0

Standard Log Length: (m) 10.00

Cruised by: F WARREN AND ASSOCIATES LTD District: 04 - South Island Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd

Top Diameter Stump Height

Forest Type	Block Strip	Plot # Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss YI	Ref No. OI M
1-Fd (HwCwDrBa)	В14	1 14.000F	20	Doug-Fir All Sp.	6 6	2607.95 2607.95	20.25 20.25	518.04 518.04	518.04 518.04	497.32 497.32	497.32 497.32	1502	101	
		2 14.000F	35	Doug-Fir All Sp.	2 2	377.67 377.67	30.72 30.72	211.58 211.58	211.58 211.58	203.11 203.11	203.11 203.11	1502	101	
		3 14.000F	28	W.R. Cedar Doug-Fir All Sp.	2 2 4	500.11 217.50 717.61	26.70 40.49 31.52	143.37 221.45 364.83	143.37 221.45 364.83	136.21 212.60 348.80	136.21 212.60 348.80	1502	201 101	
		4 14.000F	18	Alder Doug-Fir E-Down Hemlock All Sp.	2 2 1 1 5	414.15 427.45 142.24 61.13 902.73	29.34 28.88 35.40 54.00 31.42	272.09 227.52 123.43 164.97 664.58	272.09 193.53 109.43 164.97 630.60	258.49 184.43 104.49 158.37 601.29	258.49 176.68 96.74 145.10 580.27	1502	101 101 301	1210
		5 14.000F	18	Balsam W.R. Cedar Doug-Fir All Sp.	1 1 1 3	216.41 176.27 110.30 502.98	28.70 31.80 40.20 32.61	91.67 82.00 105.94 279.61	61.51 82.00 105.94 249.45	56.01 76.26 100.65 232.91	56.01 76.26 100.65 232.91	1502		411 211 110
		6 14.000F	28	Doug-Fir All Sp.	10 10	1656.55 1656.55	32.80 32.80	1378.09 1378.09	1378.09 1378.09		1322.97 1322.97	1502	101	
		7 14.000F	27	Doug-Fir All Sp.	4 4		18.09 18.09	306.56 306.56	295.91 295.91	283.65 283.65	283.65 283.65	1502	101	
		8 14.000F	20	Balsam Doug-Fir Hemlock All Sp.	1 2 1 4	221.00 648.79 68.80 938.60	28.40 23.44 50.90 27.56	164.85 210.67 185.16 560.69	164.85 210.67 185.16 560.69	158.26 202.25 177.75 538.26	158.26 202.25 177.75 538.26	1502	401 101 301	
		9 14.000F	28	W.R. Cedar Doug-Fir All Sp.	1 2 3	248.18 654.69 902.88	26.80 23.34 24.34	75.00 202.33 277.33	75.00 202.33 277.33	71.25 194.24 265.49	71.25 194.24 265.49	1502	201 101	
		10 14.000F	22	W.R. Cedar Doug-Fir All Sp.	1 2 3	54.86 100.54 155.40	57.00 59.55 58.66	108.67 324.38 433.05	108.67 324.38 433.05	103.23 311.41 414.64	103.23 311.41 414.64	1502	201 101	
		11 14.000F C	23	Doug-Fir Hemlock All Sp.	2 3 5							1502		

Average Line Method

Project: K2_AVCF

AVCF

PLSUM- 2 , p48

Grades: Cruiser Called Alpha

Cruiser Est Decay

Cruiser Est Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

Plot Summary

FIZ: B

PSYU: Nootka

Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Utilization	Levels:	Minimum	DBH	Top	Diameter	Stump	Height

Mature Blocks: (cm) 17.5 15.0 30 12.0 10.0 30 Immature Blocks:(cm)

Standard Log Length:(m) 10.00

Forest Type	Block Str	Plot ip # S	ize	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss Re YI OI	
		-			-		/ πα	DIGIII	FICTOR	Decay	DB	DND	Date	11 01	11
1-Fd (HwCwDrBa)	В14	E 2 14.	000F C	0	Doug-Fir All Sp.	3 3									
		E 5 14.	000F C	0	Doug-Fir All Sp.	4 4									
		E 7 14.	000F C	0	Doug-Fir Hemlock All Sp.	4 1 5									
		E 8 14.	000F C	0	Doug-Fir All Sp.	7 7									
		n 114.	000F C	0	Balsam W.R. Cedar Doug-Fir All Sp.	1 3 1 5									
		S 4 14.	000F C	0	W.R. Cedar Doug-Fir All Sp.	1 6 7									
		S 6 14.	000F C	0	Hemlock All Sp.	4 4									
		S 9 14.	000F C	0	W.R. Cedar Doug-Fir All Sp.	2 4 6									
		SE 3 14.	000F C	0	W.R. Cedar Doug-Fir All Sp.	3 3 6									
		W 10 14.	000F C	0	Alder Doug-Fir All Sp.	3 2 5									
2-Fd (CwBaHwDr)	В15	1 14.	000F	23	W.R. Cedar Doug-Fir E-Down All Sp.	1	88.03 1038.92 847.82 1126.95	45.00 22.69 14.50 25.15	113.00 302.43 60.82 415.43	113.00 290.88 49.26 403.88	105.09 275.76 46.22 380.85	105.09 275.76 46.22 380.85	1502		211 110 110
		2 14.	000F	28	Doug-Fir All Sp.	2 2	78.81 78.81	67.26 67.26	276.54 276.54	276.54 276.54	265.48 265.48	265.48 265.48	1502	101	

Project: K2_AVCF

Immature Blocks:(cm)

AVCF

PLSUM- 3 , p49

Average Line Method Grades: Cruiser Called Alpha

Grades: Cruiser Called Alpha Cruiser Est Decay

10.0

Cruiser Est Decay
Cruiser Est Waste
Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island

Plot Summary

30

FIZ: B

Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Utilization Levels:	Minimum DBH	Top Diameter	Stump Height
Mature Blocks: (cm)	17.5	15.0	30

12.0

Standard Log Length:(m) 10.00

Forest Type	Block Strip	Plot # Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss R YI O	
2-Fd (CwBaHwDr)	B15	3 14.000F	28	Balsam Alder Doug-Fir Hemlock E-Down	1 1 3 1	84.24 696.30 165.57 568.97 568.97	46.00 16.00 56.83 17.70 17.70	153.36 68.69 412.10 42.63 42.63	153.36 68.69 412.10 38.54 38.54	147.22 65.26 395.61 36.83 36.83	147.22 65.26 395.61 36.83 36.83		401 101 301 301	1210
				All Sp.	6	1515.09	26.57	676.77	672.68	644.92	644.92	1502		
		4 14.000F	30	Doug-Fir All Sp.	3	552.36 552.36	31.11 31.11	316.43 316.43	316.43 316.43	303.77 303.77	287.31 287.31	1502	101	
		5 14.000F	17	Doug-Fir All Sp.	4 4	858.20 858.20	28.82 28.82	382.49 382.49	382.49 382.49	367.19 367.19	367.19 367.19	1502	101	
	E	3 14.000F C	0	Doug-Fir All Sp.	5 5									
	E	4 14.000F C	0	Doug-Fir All Sp.	5 5									
	E	5 14.000F C	0	W.R. Cedar Doug-Fir All Sp.	2 2 4									
	S	2 14.000F C	0	Doug-Fir All Sp.	4 4									
	W	1 14.000F C	0	W.R. Cedar Doug-Fir Hemlock All Sp.	3 1 1 5									
3-Fd (Cw)	W14	1 14.000F	24	Doug-Fir All Sp.	3	670.72 670.72	28.24 28.24	332.01 332.01	332.01 332.01	318.73 318.73	318.73 318.73	1502	101	
		2 14.000F	19	Doug-Fir All Sp.	3 3	766.64 766.64	26.41 26.41	351.29 351.29	351.29 351.29	337.24 337.24	337.24 337.24	1502	101	
		3 14.000F	18	Doug-Fir All Sp.		1323.42 1323.42	28.43 28.43	793.37 793.37	793.37 793.37	761.63 761.63	761.63 761.63	1502	101	
		4 14.000F	22	Doug-Fir All Sp.	4 4	530.89 530.89	36.65 36.65	538.53 538.53	538.53 538.53	516.99 516.99	506.88 506.88	1502	101	
		5 14.000F	17	W.R. Cedar	1	909.46	14.00	43.22	43.22	41.06	41.06		201	

Licence Number: K2D CP: PRE

Project: K2_AVCF

Immature Blocks:(cm)

PLSUM- 4 , p50

FIZ: B

Plot Summary

30

Grades: Cruiser Called Alpha Average Line Method

Cruiser Est Decay Cruiser Est Waste Computerized Breakage

10.0

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

19-Feb-2015 02:19:32PM

Utilization Levels:	Minimum DBH	Top Diameter	Stump Height
Mature Blocks: (cm)	17.5	15.0	30

12.0

Standard Log Length:(m) 10.00

Forest		Plot	Slope		# of	Stems	Āvq	Gross	Less	Less	Less	Cruise	Togg	Ref No.
Type	Block Strip	# Size	%	Species	Stems	/ Ha	Diam	Merch	Decay	DB	DWB	Date		OI M
3-Fd (Cw)	W14	5 14.000F	17	Doug-Fir All Sp.	3 4	773.43 1682.89	26.29 20.58	454.43 497.65	454.43 497.65	436.26 477.31	436.26 477.31	1502	101	
	N	2 14.000F C	0	Doug-Fir All Sp.	6 6									
4-Fd (DrCwMb)	W16	1 14.000F	12	W.R. Cedar Alder Doug-Fir All Sp.	1 2 1 4	78.02 701.47 219.46 998.94	47.80 22.54 28.50 26.72	121.19 210.31 108.63 440.12	121.19 199.63 108.63 429.44	115.13 189.11 104.28 408.53	115.13 189.11 104.28 408.53	1502	201 101	1210
		2 14.000F	32	Doug-Fir All Sp.	4 4	947.75 947.75	27.43 27.43	402.71 402.71	402.71 402.71	386.60 386.60	386.60 386.60	1502	101	
		3 14.000F	25	Doug-Fir All Sp.		1363.14 1363.14	22.87 22.87	427.12 427.12	427.12 427.12	410.03 410.03	410.03 410.03	1502	101	
		4 14.000F	11	Doug-Fir All Sp.	2 2	451.30 451.30	28.11 28.11	199.31 199.31	199.31 199.31	191.34 191.34	191.34 191.34	1502	101	
		5 14.000F	18	W.R. Cedar Alder Doug-Fir All Sp.	2 1 2 5	395.24 352.11 279.84 1027.18	30.03 22.50 35.69 29.46	176.85 106.50 211.99 495.34	176.85 96.39 211.99 485.23	168.01 91.06 203.51 462.58	168.01 91.06 203.51 462.58	1502	201 101	1210
		6 14.000F	15	Doug-Fir All Sp.		1311.69 1311.69	28.55 28.55	672.24 672.24	669.61 669.61	642.72 642.72	608.06 608.06	1502	101	
		7 14.000F	8	Doug-Fir All Sp.	3	776.10 776.10	26.25 26.25	252.34 252.34	252.34 252.34	242.25 242.25	242.25 242.25	1502	101	
		8 14.000F	15	Doug-Fir All Sp.	2 2	223.12 223.12	39.97 39.97	227.43 227.43	227.43 227.43	218.33 218.33	218.33 218.33	1502	101	
		9 14.000F	45	W.R. Cedar Doug-Fir All Sp.	1 4 5	922.59 439.09 1361.68	13.90 40.30 25.58	37.12 494.79 531.91	37.12 494.79 531.91	35.27 475.00 510.26	35.27 475.00 510.26	1502	201 101	
		10 14.000F	30	Alder E-Down Doug-Fir All Sp.	1	1062.17 246.34 1038.71 2100.89	28.97 26.90 13.10 22.56	676.38 127.77 676.38	676.07 127.77 676.07	642.25 121.38 642.25	574.13 106.86 574.13	1502	101	1210 1210
		11 14.000F	32	Doug-Fir All Sp.	4	872.90 872.90	28.58 28.58	432.60 432.60	432.60 432.60	410.97 410.97	410.97 410.97	1502		110

Licence Number: K2D CP: PRE

Project: K2_AVCF

Mature Blocks: (cm)

Immature Blocks:(cm)

PLSUM- 5 , p51

Average Line Method Grades: Cruiser Called Alpha

Grades: Cruiser Called Cruiser Est Decay

Cruiser Est Waste
Computerized Breakage

15.0

10.0

FIZ: B PSYU: Nootka

Plot Summary

30

30

Region: 2 - West Coast District: 04 - South Island 19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Utilization	Levels:	Minimum	DBH	Top I	Diameter	Stump	Height

17.5

12.0

Standard Log Length:(m) 10.00

				_												
Forest		Plot		Slope		# of	Stems	Avg	Gross	Less	Less	Less	Cruise		s Ref	
Type	Block Strip	# S	lize	8	Species	Stems	/ Ha	Diam	Merch	Decay	DB	DWB	Date	YI	OI	M
4-Fd (DrCwMb)	W16	12 14.	0001	15	Doug-Fir	3	560.29	30.89	372.51	372.51	357.61	357.61		101		
4-FG (DICWMD)	MTO	12 14.	UUUF	15	All Sp.	3	560.29	30.89	372.51	372.51	357.61	357.61	1502	101		
					AII Sp.	3	300.29	30.69	3/2.31	3/2.31	337.01	337.01	1502			
		13 14.	000F	15	Doug-Fir	3	1285.13	20.40	231.81	231.81	222.54	222.54		101		
					All Sp.		1285.13	20.40	231.81	231.81	222.54	222.54	1502			
		14 14.	000F	35	Doug-Fir	4	2128.42	18.30	315.68	315.68	303.05	303.05		101		
					Maple	1	296.97	24.50	71.71	71.71	68.13	68.13			1	310
					All Sp.	5	2425.38	19.17	387.39	387.39	371.18	371.18	1502			
	E	3 14.	000F C	! 0	Doug-Fir	3										
					All Sp.	3										
						_										
	N	11 14.	000F C	! 0	Doug-Fir	3										
					All Sp.	3										
	NE	0 14	000= 0	. 0	314	2										
	NE	2 14.	000F C	! 0	Alder Doug-Fir	2 5										
					All Sp.	5 7										
					AII SP.	,										
	S	6 14.	000F C	! 0	Doug-Fir	4										
	5	0 11.	0001		All Sp.	4										
					~F ·	-										
	W	4 14.	000F C	! 0	Doug-Fir	6										
					All Sp.	6										

Plot Frequency Report

Average Line Method Grades: Cruiser Called Alpha

AVCF Licence Number: K2D CP: PRE

Cruiser Est Decay Cruiser Est Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island PLFRQ- 1 , p52

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Measure Plots

Project: K2_AVCF

Blocks	Timber T	ype 2 3	4
BLOCK B14 (I) # of Plots ha / Plot	10 1.53		
BLOCK B15 (I) # of Plots ha / Plot		5 1.52	
BLOCK W14 (I) # of Plots ha / Plot		5 1.16	
BLOCK W16 (I) # of Plots ha / Plot			14 1.13
Cutting Permit # of Plots ha / Plot		5 5 1.52 1.16	

Plot Frequency Report

Grades: Cruiser Called Alpha FI

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island PLFRQ- 2 , p53 19-Feb-2015 02:19:32PM

Filename: AVCF_internal.ccp Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Measure Plots

Harvest Methods	Timber	Type		
	1	2	3	4
METHOD SC # of Plots ha / Plot	10 1.53	5 1.52	5 1.16	14 1.13
All Methods # of Plots ha / Plot	10 1.53	5 1.52	5 1.16	14 1.13

Plot Frequency Report

Average Line Method Grades: Cruiser Called Alpha

AVERAGE Line Metho

Licence Number: K2D CP: PRE Project: K2_AVCF

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste Computerized Breakage FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island PLFRQ- 3 , p54

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

Version: 2014.00 IFS build 5885

Count Plots

Blocks	Timber 1	Type 2	3	4
BLOCK B14 (I) # of Plots ha / Plot	11 1.39			
BLOCK B15 (I) # of Plots ha / Plot		5 1.52		
BLOCK W14 (I) # of Plots ha / Plot			1 5.80	
BLOCK W16 (I) # of Plots ha / Plot				5 3.16
Cutting Permit # of Plots ha / Plot		5 1.52	1 5.80	5 3.16

Plot Frequency Report

PSYU: Nootka

FIZ: B

Average Line Method

Project: K2_AVCF

Licence Number: K2D CP: PRE

Grades: Cruiser Called Alpha Cruiser Est Decay

Cruiser Est Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

19-Feb-2015 02:19:32PM Filename: AVCF_internal.ccp

Compiled by: F Warren And Associates Ltd Cruised by: F WARREN AND ASSOCIATES LTD

PLFRQ- 4 , p55

Version: 2014.00 IFS build 5885

Count Plots

Harvest Methods	Timber 1	Type 2	3	4
METHOD SC # of Plots ha / Plot	11 1.39	5 1.52	1 5.80	5 3.16
All Methods # of Plots ha / Plot	11 1.39	5 1.52	1 5.80	5 3.16