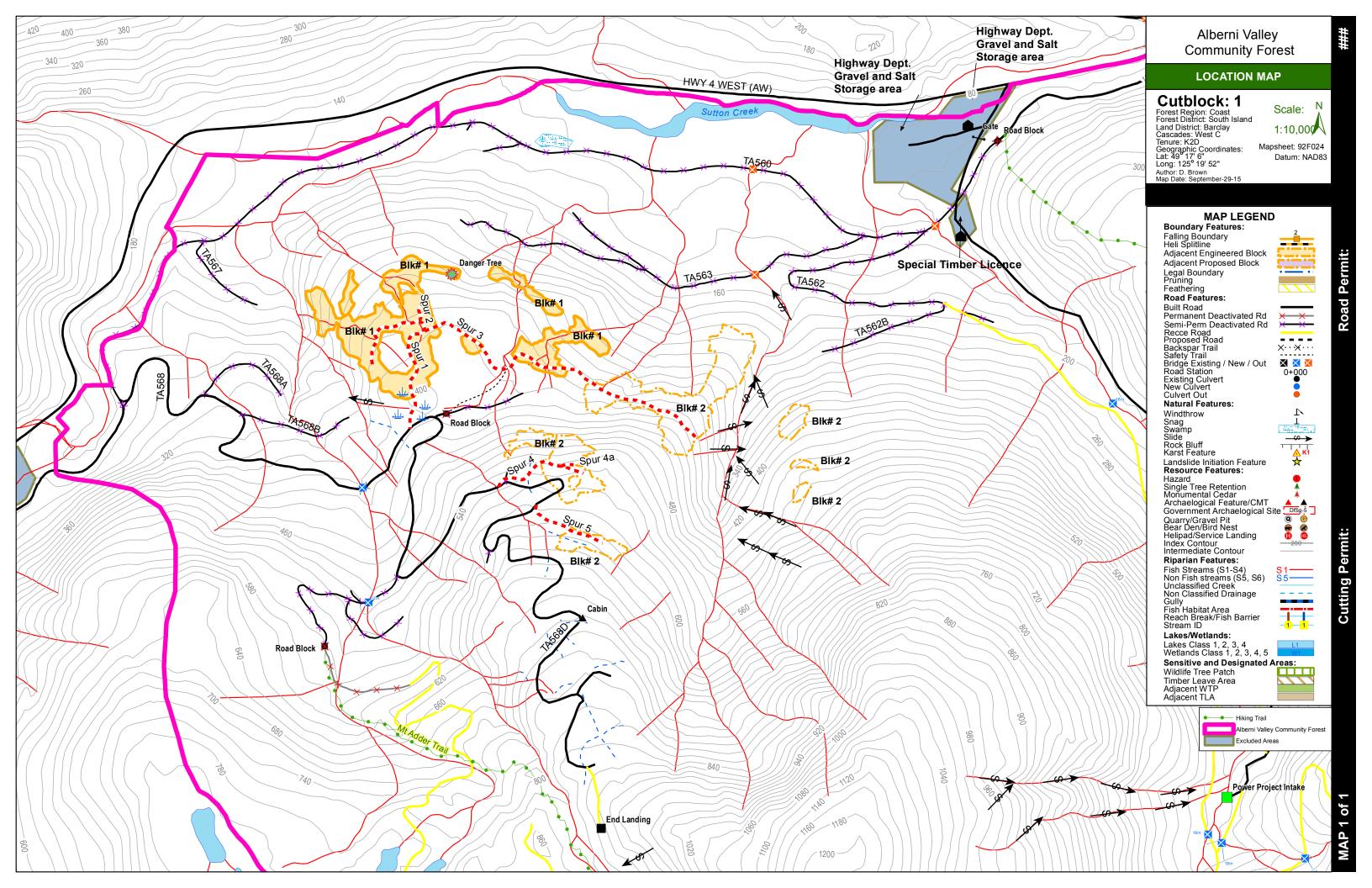
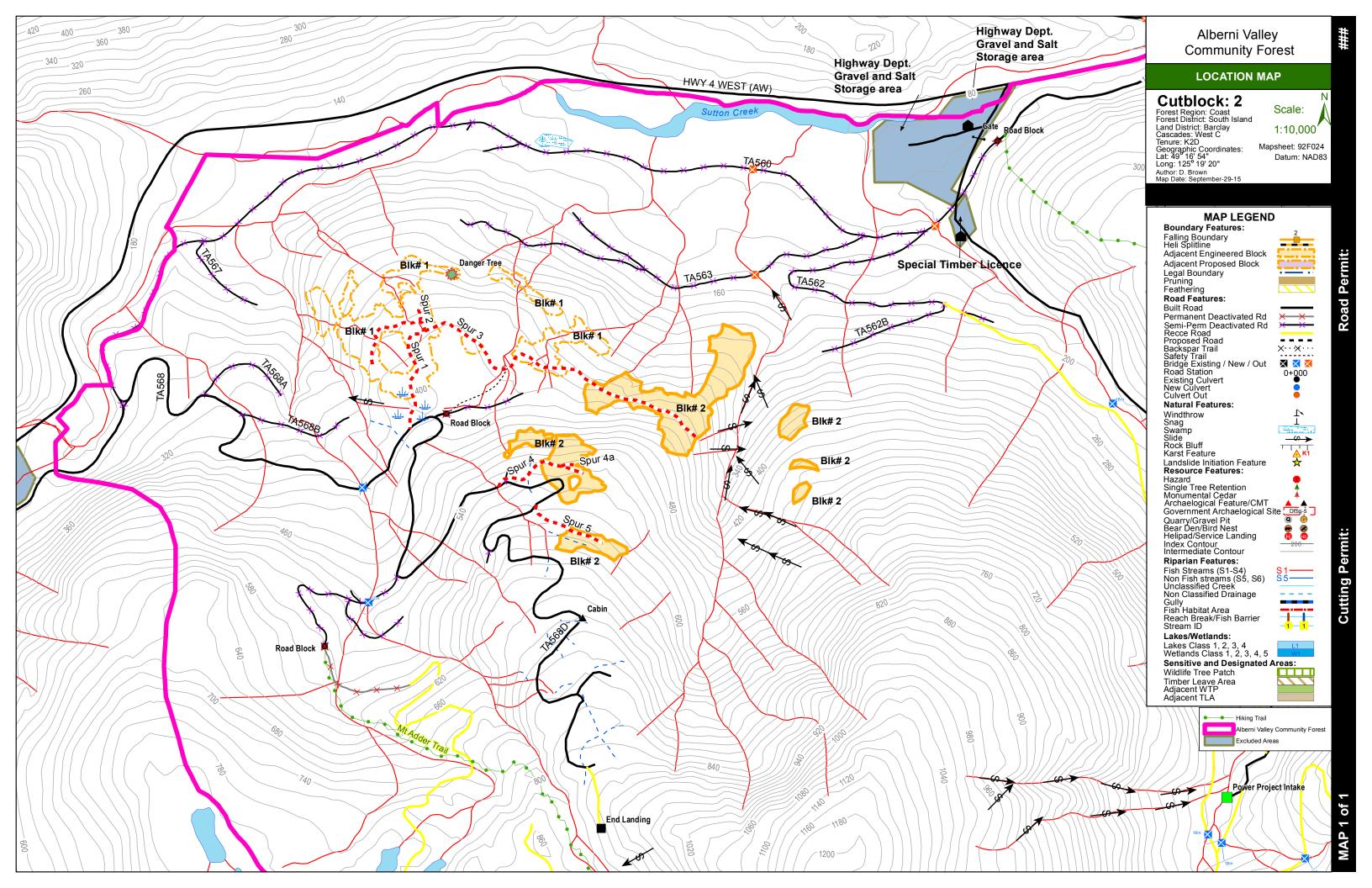
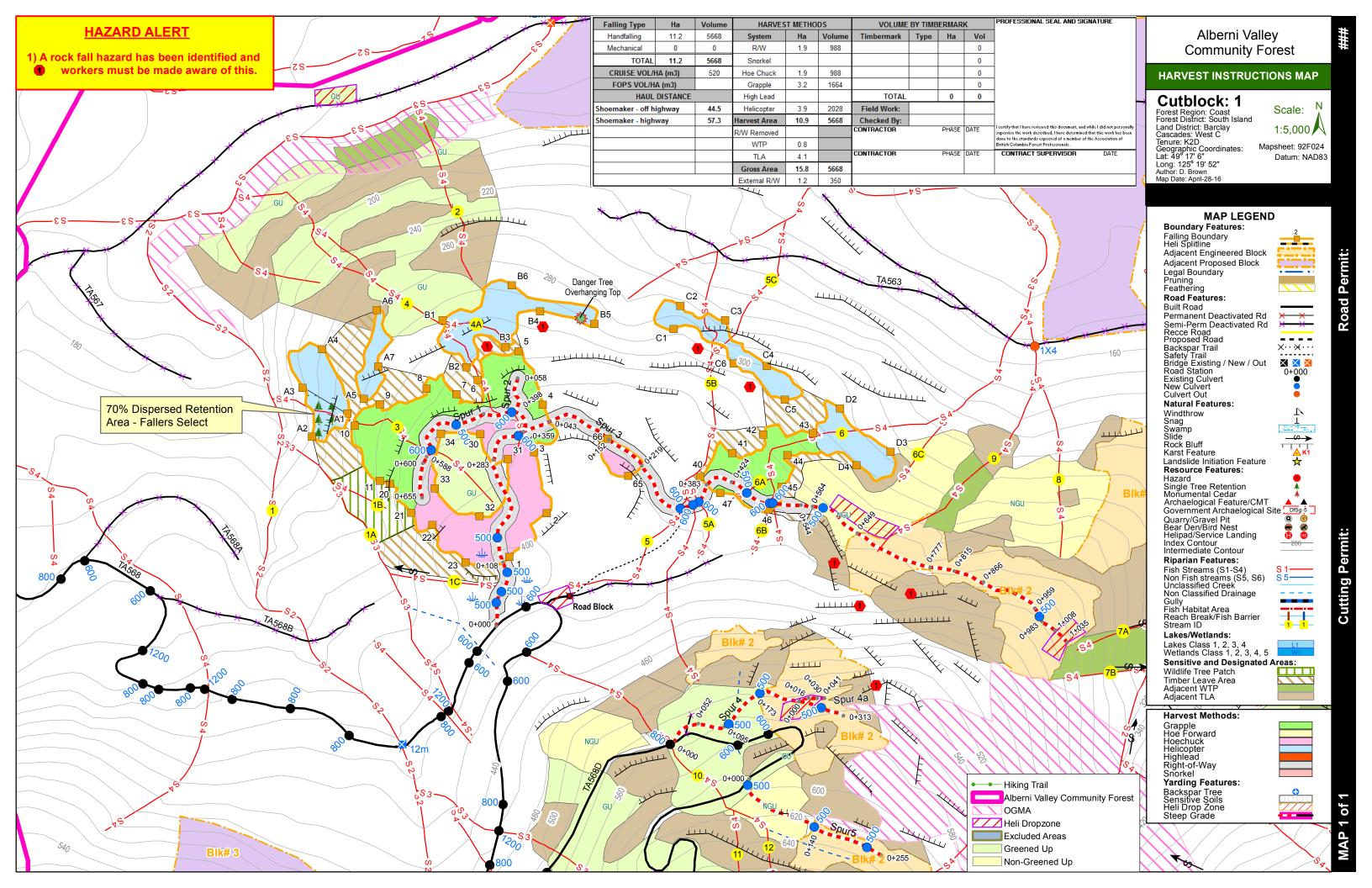


Engineer Report CP 10


Cutblocks: 1 and 2


Prepared By: Chris Law, RFT


Date: June 30, 2016

Contents

Appendix 1: CP 10 Overview Map			3
Appendix 2: Harvest Maps and Instructions		<u>5</u>	
Appendix 3: Road Construction Maps and Instructions		9	
Appendix 4: Road Designs		11	
Appendix 5: Site Plans and Site Plan maps		66	
Appendix 6: Deflection Line Package	90		
Appendix 7: Safety Highlights	111		
Appendix 8: Wet Weather Shutdown Guidelines		113	
Appendix 9: Cruise Report		126	
Appendix 10: Terrains Stability Assessment		265	

HARVEST INSTRUCTIONS CUTBLOCK: Block 1

Alberni Valley Community Forest Taylor FDU ACCESS ROAD: TA568 CUTTING PERMIT: TIMBERMARK:

RAINFALL SHUTDOWN CRITERIA - WET and VERY WET ZONE: Follow AVCF Rainfall Shutdown Standard. Activities must shut down if: The total rainfall reaches 100mm in 24 hours or less, 75mm of rain has fallen since the start of the shift and rain is continuing, or the water balance is equal to or greater than 100mm, whichever occurs first. RAINFALL START-UP CRITERIA - WET and VERY WET ZONE: - Activities may start-up when: The total rainfall is equal to or less than 50mm in 48 hours, or the water balance falls below 100mm. Soil drainage rate is 50mm in 24 hours.

STREAM STANDARDS (SOP)

- •PRIMARY OBJECTIVE: TO PROTECT WATER QUALITY MAINTAIN STREAM BANKS AND THEIR NATURAL WATERCOURSE
- •High stump non merchantable and smaller diameter stems along all in-block streams to provide visual reference for subsequent yarding phases.
- •Avoid machine travel within 5m of stream banks except at crossings.
- •Minimize number of machine crossings, only cross streams where stream banks can be protected, use bridging material for all crossings and remove after use.
- •No landing or decking logs on any stream.

STREAM PRESCRIPTIONS **Reserve Zone Width Management Zone Width** Stream Stream ID Riparian Management Strategies. Class Slope Distance (m) Slope Distance (m) FA. YA. Outside of harvest area. Gully 30m 20m 20m FA, YA, Outside of harvest area 1A 20m 1B **S4** 0m 30m FA, YA, Outside of harvest area **S4** 1C 30m FA, YA, Outside of harvest area 0m 0m FA, YA, Outside of harvest area 2 **S4** 30m FX, YX, NC 3 **S4** 0m 30m FX, YX, NC 4 **S4** 0m 30m FX, YX, NC 4A **S4** 0m 30m 5 **S4** 0m 30m FA, YA, Outside of harvest area FA, YA, Outside of harvest area 5A **S4** 0m30m 5B 0m 30m FX, YX, NC 5C 0m 30m FX, YX, NC 6 **S**4 0m 30m FX, YX, NC **S4** FX, YX, NC 6A 0m 30m **S**4 0m 30m FX, YX, NC 6B 6C **S4** 0m 30m FA, YA, Outside of harvest area

	STRATEGY DEFINITIONS						
	FALLING		CABLE YARDING				
FX	Fall across acceptable	YX	Yard across acceptable. Full suspension where possible.				
FA	Fall away only	YA	Yard away only				
FA(X)	Fall away where possible	YV	Yard vertically				
FA/BL	Fall Away. Leaners and danger trees that cannot be safely felled away may be bridged to span						
RS	Retain saplings and non-merch						
	GROUND BASED YARDING AND STREAM CROSSINGS		STREAM CLEANING				
YX	Stream crossings acceptable provided stream standards (SOP) followed	NC	No cleaning anticipated				
DX	Approximate location(s) of designated machine crossings have been identified – see map	HC	Hand clean transportable debris				
NX	No machine crossings	MC	Machine clean transportable debris				
MFZ	Machine Free Zone	AC	Cleaning to be assessed post-yarding prior to block completion				

GENERAL INSTRUCTIONS

All employees, supervisors and contractors associated with these Harvest Instructions shall be fully advised of their content requirements and be aware and knowledgeable of Alberni Valley Community Forests (AVCF) environmental management systems (EMS) and appropriate standard operating procedures (SOPs).

ADDITIONAL INSTRUCTIONS

- [1] Ground Based Operations / Backspar Trails: Ensure sufficient brush matting and puncheon is utilized in order to minimize soil disturbances. If excessive soil disturbance occurs, cease operations until soil moisture conditions prove or move to an area where drier conditions exist.
- [2] Fuelling: Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream. lake or wetland.
- [3] RMA distances: STREAMS: S1 70 m, S2 50 m, S3 40 m, S4 30 m LAKES: L1 10 m, L3 30 m, WÉTLANDS: W1, W5 50 m, W3 30 m.
- [4] Cultural Resources: If an unidentified cultural heritage resource is encountered within the cutblock during any harvesting phase, operations will cease in the immediate vicinity of the feature and the AVCF representative shall he notified immediately.
- [5] Wildlife Resources: In the event any unidentified bear dens or raptor nest trees are encountered during falling, but before the tree has been cut, the faller will go elsewhere for the day and report this potential wildlife tree to the AVCF representative. Fallers are not to return to the vicinity of the wildlife tree until notification from the AVCF has been given. If the discovery of a bear den or potential nest tree occurs while the tree is being felled, the decision to proceed is at the faller's discretion in regards to safety and WorkSafe BC requirements. If it is unsafe to leave the tree partially cut, the faller will complete falling the tree and report the incident to AVCF.
- [6] Seasonal Deactivation: Ensure ditches and culverts are clean prior to completion of block and/or winter shutdown. Back up culverts with waterbars or x-ditches. Particular attention should be given to segments of road that have steep grades, steep terrain and roads within a Fisheries sensitive watershed. Maintain pickup access.
- [7] Fish Streams: Due to the close proximity of fish streams immediately downstream of the cutblock, ensure a high level of diligence is maintained regarding stream bank protection, in-stream woody debris disturbance, and protection of stream banks at designated crossings.

[8] Retention: Internal retention not specified on the map requires review with the AVCF prior to implementing and necessitates a 'change in plan'. Individual trees along boundary edges may be left standing due to safety or operability issues and do not require documentation unless they pose hazard to subsequent phases. Groups of trees left along boundary edges for safety and/or operability issues need approval from the AVCF

CHANGE OF PLAN

Any substantial 'change of plan' will require prior approval from the AVCF Examples of a substantial 'change of plan' are: a change in harvest system necessitated in the prework, a change in location of back spar trails, a change in approved timber to be felled or yarded and any other variation from AVCF SOPs.

FALLING of SNAGS and DANGER TREES

In accordance with the Cutting Permit Authority and WorkSafe BC Regulations, all snags and danger trees that endanger workers within a distance of 50m outside the cutblock boundaries, or within one and a half tree lengths, (whichever is greater), are approved for falling under these harvest instructions. All danger trees and related trees felled from outside of the approved boundaries must be reported to the supervisor daily and their stumps should be marked with an "X". AVCF will be notified immediately if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Felled snags and danger trees up to 50m outside of the falling boundary meeting utilization specifications will be recovered.

EXCEPTION- Wildlife Tree Patch (WTP) and Riparian reserve areas (RRZ)- Snags or danger trees can be felled within a WTP or RRZ for safety reasons although only the portion of the felled snag or danger tree that falls outside the WTP or RRZ can be recovered.

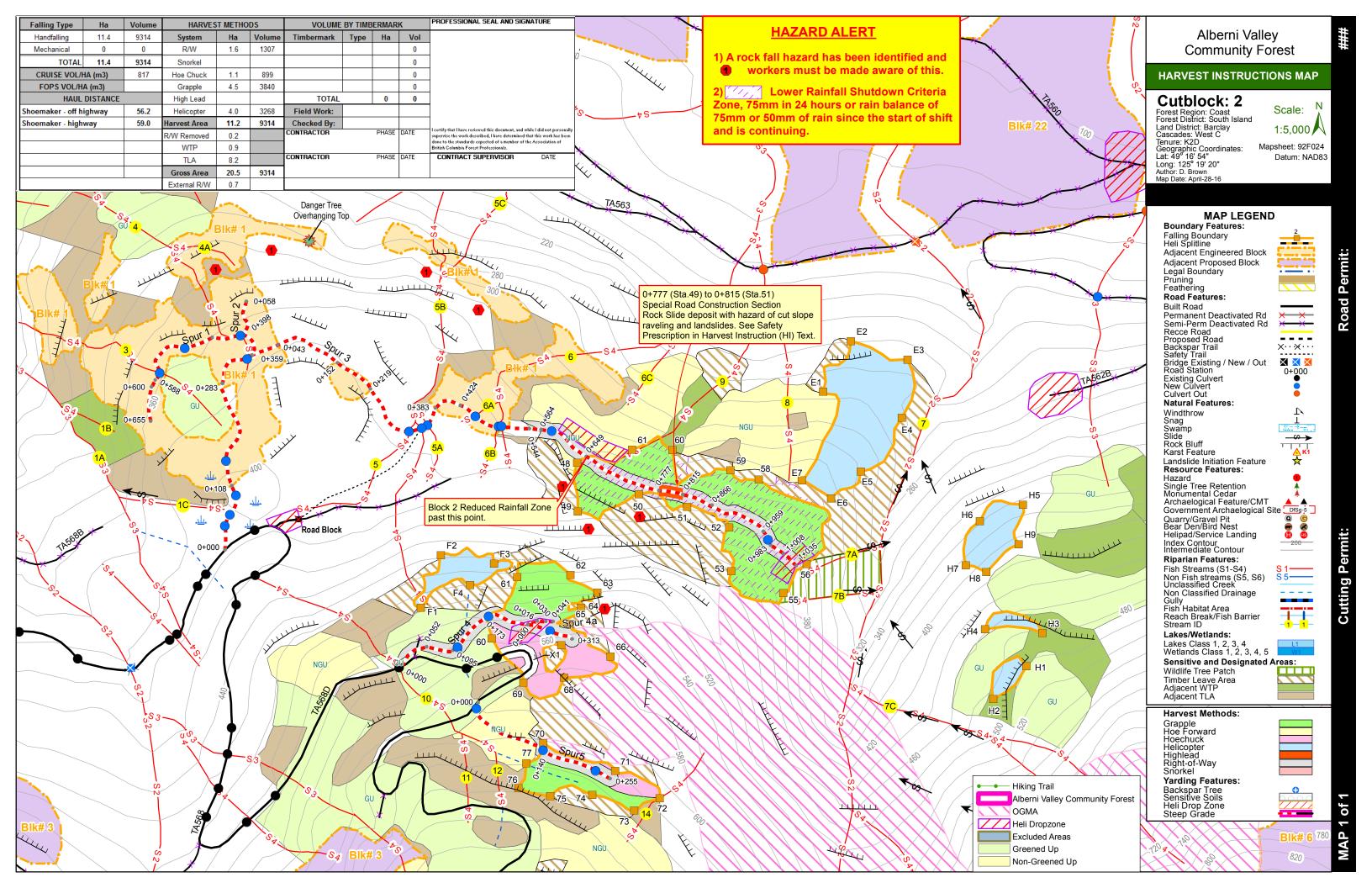
CUTBLOCK BOUNDARY TREATMENTS

All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees located along and adjacent to the cutblock edges (i.e. within the harvest boundary) that must be felled outside the harvest area must be recovered unless a physical, safety or environmental issue exists (e.g. deep gullies, steep breaks, fish creek, etc.). Trees that cannot be recovered may be left standing, if they are safe to leave, as wildlife trees. These trees must be recorded on a map and provided to the AVCF once falling is complete. If you are unsure how to proceed, contact the AVCF.

SAFETY

dentified danger tree with a overhanging top near FC-B5. There is no other identified road or in-block safety hazards associated with Block 1. Roads required for hauling must be inspected by a qualified supervisor and any deficiencies must be reported to the AVCF 10 days prior to hauling commencement. In the event any additional in-block safety hazards (temporary or permanent) are encountered or develop during harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to the AVCF (using Hazard/Issue Report Form).

TERRAIN


Block 1 has a Very Low to Low potential for post-harvest landslides other than a portion of a helicopter polygon near FC-A1 to FC-A3 which has a moderate to high potential for a small to moderate sized post-harvest landslides. Workers should be made aware of the potential for rock fall from upslope of helicopter polygons from FC-B2 to FC-B5 and FC-C1 to FC-C5.

No new Roads have designed sections >18% but the built TA568 does contain sections of >18% grades. All other haul routes (pre-existing roads) to Sort have no sections of > 18%.

HAULING ON STEEP ROADS

Before Hauling commences on any road section >18%, a steep grade assessment must be conducted by a qualified supervisor (i.e.: prime contractor supervisor or AVCF). If any road sections have been built with critical pitch grades greater than those identified in the table below then hauling cannot commence until a new assessment has been completed by the AVCF or the road has been reconstructed to (or less than) the original designed grade. Any new steep grades >18% not identified in the table below must also be assessed by the AVCF prior to hauling

Monitor conditions continually and adjust hauling activities to suit the traction conditions. (E.g. suspend hauling activities--See Table below). If assumptions concerning truck configurations are altered, contact AVCF for additional instructions

HARVEST INSTRUCTIONS CUTBLOCK: Block 2

ACCESS ROAD: TA568 Alberni Valley Community Forest Taylor FDU CUTTING PERMIT: TIMBERMARK:

RAINFALL SHUTDOWN CRITERIA - WET and VERY WET ZONE: Follow AVCF Rainfall Shutdown Standard. Activities must shut down if: The total rainfall reaches 100mm in 24 hours or less, 75mm of rain has fallen since the start of the shift and rain is continuing, or the water balance is equal to or greater than 100mm, whichever occurs first. RAINFALL START-UP CRITERIA - WET and VERY WET ZONE: - Activities may start-up when: The total rainfall is equal to or less than 50mm in 48 hours, or the water balance falls below 100mm. Soil drainage rate is 50mm in 24 hours.

STREAM STANDARDS (SOP)

•PRIMARY OBJECTIVE: TO PROTECT WATER QUALITY - MAINTAIN STREAM BANKS AND THEIR NATURAL WATERCOURSE

30m

- •High stump non merchantable and smaller diameter stems along all in-block streams to provide visual reference for subsequent yarding phases.
- •Avoid machine travel within 5m of stream banks except at crossings.

0m

- •Minimize number of machine crossings, only cross streams where stream banks can be protected, use bridging material for all crossings and remove after use.
- •No landing or decking logs on any stream.

STREAM PRESCRIPTIONS Stream **Reserve Zone Width Management Zone Width** Stream ID Riparian Management Strategies. Class Slope Distance (m) Slope Distance (m) 30m 20m FA, YA, Outside of Block, Gully **S2** 30m FA, YA, Outside of Block 7A 0m 7B **S4** 0m 30m FA, YA, Outside of Block **S4** 7C 30m FA, YA, Outside of Block 0m 0m 30m FA, YA, Outside of Block 8 **S4** FX, YX, NC 9 **S4** 0m 30m 10 **S4** FA, YA, Outside of Block 0m 30m FA, YA, Outside of Block 11 **S**4 0m 30m FA, YA, Outside of Block 12 **S4** 0m 30m

FA, YA, Outside of Block

	STRATEGY DEFINITIONS						
	FALLING		CABLE YARDING				
FX	Fall across acceptable	YX	Yard across acceptable. Full suspension where possible.				
FA	Fall away only	YA	Yard away only				
FA(X)	Fall away where possible	YV	Yard vertically				
FA/BL	Fall Away. Leaners and danger trees that cannot be safely felled away may be bridged to span						
RS	Retain saplings and non-merch						
	GROUND BASED YARDING AND STREAM CROSSINGS		STREAM CLEANING				
YX	Stream crossings acceptable provided stream standards (SOP) followed	NC	No cleaning anticipated				
DX	Approximate location(s) of designated machine crossings have been identified – see map	HC	Hand clean transportable debris				
NX	No machine crossings	MC	Machine clean transportable debris				
MFZ	Machine Free Zone	AC	Cleaning to be assessed post-yarding prior to block completion				

GENERAL INSTRUCTIONS

14

S4

All employees, supervisors and contractors associated with these Harvest Instructions shall be fully advised of their content requirements and be aware and knowledgeable of Alberni Valley Community Forests (AVCF) environmental management systems (EMS) and appropriate standard operating procedures (SOPs).

ADDITIONAL INSTRUCTIONS

- [1] Ground Based Operations / Backspar Trails: Ensure sufficient brush matting and puncheon is utilized in order to minimize soil disturbances. If excessive soil disturbance occurs, cease operations until soil moisture conditions improve or move to an area where drier conditions exist.
- [2] Fuelling: Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland.
 [3] RMA distances: STREAMS: S1 70 m, S2 50 m, S3 40 m, S4 30 m LAKES: L1 10 m, L3 30 m, WETLANDS: W1, W5 50 m, W3 30 m.
- [4] Cultural Resources: If an unidentified cultural heritage resource is encountered within the cutblock during any harvesting phase, operations will cease in the immediate vicinity of the feature and the AVCF representative shall
- [5] Wildlife Resources: In the event any unidentified bear dens or raptor nest trees are encountered during falling, but before the tree has been cut, the faller will go elsewhere for the day and report this potential wildlife tree to the AVCF representative. Fallers are not to return to the vicinity of the wildlife tree until notification from the AVCF has been given. If the discovery of a bear den or potential nest tree occurs while the tree is being felled, the decision to proceed is at the faller's discretion in regards to safety and WorkSafe BC requirements. If it is unsafe to leave the tree partially cut, the faller will complete falling the tree and report the incident to AVCF.
- [6] Seasonal Deactivation: Ensure ditches and culverts are clean prior to completion of block and/or winter shutdown. Back up culverts with waterbars or x-ditches. Particular attention should be given to segments of road that have steep grades, steep terrain and roads within a Fisheries sensitive watershed. Maintain pickup access. [7] Fish Streams: Due to the close proximity of fish streams immediately downstream of the cutblock, ensure a high level of diligence is maintained regarding stream bank protection, in-stream woody debris disturbance, and protection of
- stream banks at designated crossings. [8] Retention: Internal retention not specified on the map requires review with the AVCF prior to implementing and necessitates a 'change in plan'. Individual trees along boundary edges may be left standing due to safety or operability

issues and do not require documentation unless they pose hazard to subsequent phases. Groups of trees left along boundary edges for safety and/or operability issues need approval from the AVCF

Any substantial 'change of plan' will require prior approval from the AVCF Examples of a substantial 'change of plan' are: a change in harvest system necessitated in the prework, a change in location of back spar trails, a change in approved timber to be felled or yarded and any other variation from AVCF SOPs.

FALLING of SNAGS and DANGER TREES

In accordance with the Cutting Permit Authority and WorkSafe BC Regulations, all snags and danger trees that endanger workers within a distance of 50m outside the cutblock boundaries, or within one and a half tree lengths, (whichever is greater), are approved for falling under these harvest instructions. All danger trees and related trees felled from outside of the approved boundaries must be reported to the supervisor daily and their stumps should be marked with an "X". AVCF will be notified immediately if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Felled snags and danger trees up to 50m outside of the falling boundary meeting utilization specifications will be recovered.

EXCEPTION- Wildlife Tree Patch (WTP) and Riparian reserve areas (RRZ)- Snags or danger trees can be felled within a WTP or RRZ for safety reasons although only the portion of the felled snag or danger tree that falls outside the WTP or RRZ can be recovered.

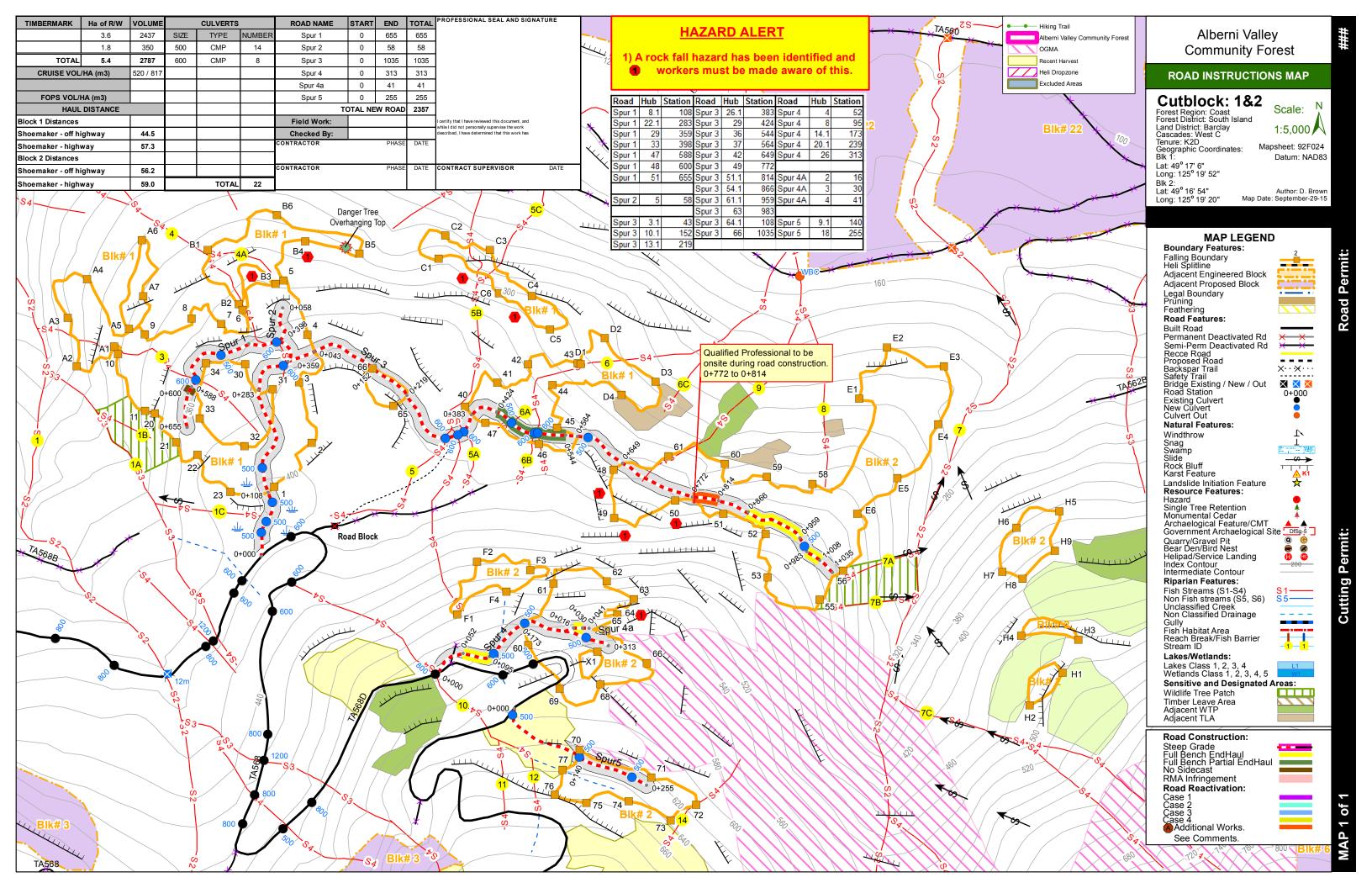
CUTBLOCK BOUNDARY TREATMENTS

All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees located along and adjacent to the cutblock edges (i.e. within the harvest boundary) that must be felled outside the harvest area must be recovered unless a physical, safety or environmental issue exists (e.g. deep gullies, steep breaks, fish creek, etc.). Trees that cannot be recovered may be left standing, if they are safe to leave, as wildlife trees. These trees must be recorded on a map and provided to the AVCF once falling is complete. If you are unsure how to proceed, contact the AVCF.

There is no other identified road or in-block safety hazards associated with Block 2. Roads required for hauling must be inspected by a qualified supervisor and any deficiencies must be reported to the AVCF 10 days prior to hauling commencement. In the event any additional in-block safety hazards (temporary or permanent) are encountered or develop during harvesting phases, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to the AVCF (using Hazard/Issue Report Form)

TERRAIN

Block 2 has a Very Low to Low potential for post-harvest landslides other than a portion of a helicopter polygon near FC-A2 which has a moderate potential for post-harvest landslides and a high potential for rock fall. Workers should be made aware of the potential for rock fall from upslope from FC48 to FC51, FC63 to FC65 and FC-F1 to FC-F3. Workers should be aware of deep bedrock fractures outside of harvest areas near FC59 and FC61.


STEEP GRADES

No new Roads have designed sections >18% but the built TA568 does contain sections of >18% grades. All other haul routes (pre-existing roads) to Sort have no sections of > 18%.

HAULING ON STEEP ROADS

Before Hauling commences on any road section >18%, a steep grade assessment must be conducted by a qualified supervisor (i.e.: prime contractor supervisor or AVCF). If any road sections have been built with critical pitch grades greater than those identified in the table below then hauling cannot commence until a new assessment has been completed by the AVCF or the road has been reconstructed to (or less than) the original designed grade. Any new steep grades >18% not identified in the table below must also be assessed by the AVCF prior to hauling

Monitor conditions continually and adjust hauling activities to suit the traction conditions. (E.g. suspend hauling activities--See Table below). If assumptions concerning truck configurations are altered, contact AVCF for additional

ROAD INSTRUCTIONS CUTBLOCK: Block 1 & Block 2

Alberni Valley Community Forest K2D Taylor FDU ACCESS ROAD: TA568 & TA568D CUTTING PERMIT: TIMBERMARK:

RAINFALL SHUTDOWN CRITERIA – WET and VERY WET ZONE: Follow AVCF's Rainfall Shutdown Standard. Activities must shut down if: The total rainfall reaches 100mm in 24 hours or less, 75mm of rain has fallen since the start of the shift and rain is continuing, or the water balance is equal to or greater than 100mm, whichever occurs first.

RAINFALL START-UP CRITERIA – WET and VERY WET ZONE: - Activities may start-up when: The total rainfall is equal to or less than 50mm in 48 hours, or the water balance falls below 100mm. Soil drainage rate is 50mm in 24 hours.

ROAD CONSTRUCTION SUMMARY

Road Name	Start Station	End Station	Type of Works/Comments
Spur 1	0+000	Sta.51 – 0+655	New Road Construction, Stream crossings listed below.
Spur 2	0+000	Sta.5 - 0+058	New Road Construction, no Stream crossings.
Spur 3	0+000	Sta.66 - 1+035	New Road Construction, Stream crossings listed below.
Spur 4	0+000	Sta.26 - 0+313	New Road Construction, No Stream Crossings
Spur 4A	0+000	Sta.4 - 0+041	New Road Construction, No Stream Crossings
Spur 5	0+000	Sta.18 - 0+255	New Road Construction, No Stream Crossings.

SPECIAL CONSTRUCTION / ENDHAUL SUMMARY

Road Name	Start Station	End Station	Prescriptions
Spur 1	Sta.47 – 0+588	Sta.48 – 0+600	Conventional Road Construction with no side casting over steep bedrock outcrop.
Spur 3	Sta.29 - 0+424	Sta.36 - 0+544	Partial End-haul (PEH)
Spur 3	Sta.49 - 0+772	Sta.51 (+5m) - 0+814	Section of coarse colluvium or bedrock fractures. Have a Qualified Professional Engineer on-site during road building.
Spur 3	Sta.55 (-10m) - 0+866	Sta.62 (-5m) - 0+959	Full Bench End-haul
Spur 3	Sta.63 - 0+983	Sta.64 (+5m) - 1+008	Full Bench End-haul
Spur 4	Sta.4 - 0+052	Sta.8 - 0+095	Full Bench End-haul
Spur 4A	0+016 - Sta.2	0+030 - Sta.4	Full Bench End-haul

Road Name	Station	Riparian ID	Riparian Class	Debris Transport Potential	Culvert/ Bridge Size	Designed Peak Flow	Special instructions for operations within or adjacent to RMA
Spur 1	Sta.28 - 0+348	4	S4	Low	600	Q100	None
Spur 1	Sta.33.1- 0+404	4	S4	Low	600	Q100	None
Spur 1	Sta.45.1 - 0+575	3	S4	Low	600	Q100	None
Spur 3	Sta. 21 - 0+317	5	S4	Low	600	Q100	None
Spur 3	Sta.23.1 - 0+337	5B	S4	Low	600	Q100	None
Spur 3	Sta.24.1 - 0+348	5A	S4	Low	600	Q100	None None
Spur 3	Sta.30.2 - 0+453	6A	S4	Low	500	Q100	None None
Spur 3	Sta.33.2 - 0+494	6B	S4	Low-Mod	600	Q100	None
Spur 3	Sta.34 - 0+499	6	S4	Low-Mod	600	Q100	None

GENERAL INSTRUCTIONS

All employees, supervisors and contractors associated with these Road Instructions shall be fully advised of their content requirements and be aware and knowledgeable of Alberni Valley Community Forest (AVCF) environmental management systems (EMS) and appropriate standard operating procedures (SOPs).

ADDITIONAL INSTRUCTIONS

- [1] R/W Widths: R/W clearing widths to be 25 meters unless a larger width is required for safety or otherwise prescribed. See table on front of map.
- [2] Pit or Spoil Sites: Prior approval must be obtained from AVCF if falling beyond right-of-way clearing is required for spoil sites or quarries.
- [3] Culverts: Proposed cross-drain culvert locations are approximate. Site specific installation to within ±25m is acceptable. Installation beyond this distance constitutes a 'change of plan' and requires prior approval from the AVCF Representative.
- [4] Fuelling: Equipment must not be fuelled or serviced within the riparian management area (RMA) of a stream, lake or wetland.
- RMA distances: STREAMS: S1 70 m, S2 50 m, S3 40 m, S4 30 m, LAKES: L1 10 m, L3 30 m, WETLANDS: W1, W5 50 m, W3 30 m.
- [5] Quarries: Avoid quarry locations within the RMA of any stream; where avoidance is not practical, quarries may be located within the RMA of a S6 stream if no impacts (i.e. increased sedimentation) will occur to the stream. All other streams (i.e. S1 to S5) require prior approval from AVCF before a quarry may be located within its RMA.
- [6] Cultural Resources: If an unidentified cultural heritage resource is encountered within the cutblock during any harvesting phase, operations will cease in the immediate vicinity of the feature and TFN's engineering department shall be notified immediately.
- [7] Wildlife Resources: In the event any unidentified bear dens or raptor nest trees are encountered during falling, but before the tree has been cut, the faller will go elsewhere for the day and report this potential wildlife tree to an AVCF Representative. Fallers are not to return to the vicinity of the wildlife tree until notification from the AVCF has been given. If the discovery of a bear den or potential nest tree occurs while the tree is being felled, the decision to proceed is at the faller's discretion in regards to safety and WorkSafe BC requirements. If it is unsafe to leave the tree partially cut, the faller will complete falling the tree and report the incident to the AVCF.
- [8] Fish Streams: Due to the close proximity of fish streams immediately downstream of the cutblock, ensure a high level of diligence is maintained regarding stream bank protection, in-stream woody debris disturbance, and protection of stream banks at designated crossings.

CHANGE OF PLAN

Any substantial 'change of plan' will require prior approval from the AVCF. Examples of a substantial 'change of plan' are: a wood culvert to a metal culvert, a large metal culvert to two smaller metal culverts, a different spoil site location, and any variation from the AVCF SOPs.

FALLING of SNAGS and DANGER TREES

In accordance with the Cutting Permit Authority and WorkSafe BC Regulations, all snags and danger trees that endanger workers within a distance of 50m outside the cutblock boundaries, or within one and a half tree lengths, (whichever is greater), are approved for falling under these harvest instructions. All danger trees and snags outside the cutblock boundaries that are required to be felled must be recorded on a map and provided to the AVCF once falling has been completed. The AVCF will be notified immediately if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Felled snags and danger trees up to 50m outside of the falling boundary meeting utilization specifications will be recovered.

EXCEPTION- Wildlife Tree Patch (WTP) areas and Riparian Reserve Zone (RRZ) - Snags or danger trees can be felled within a WTP or RRZ for safety reasons although only the portion of the felled snag or danger tree that falls outside the WTP or RRZ can be recovered.

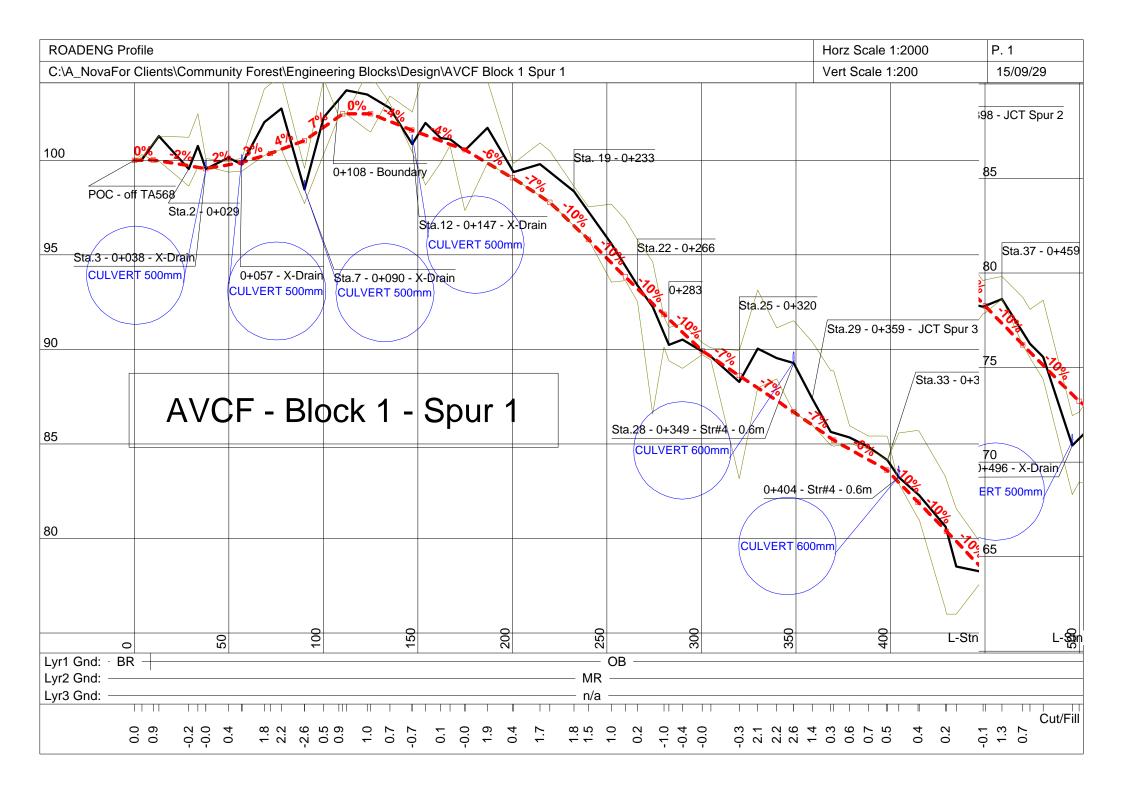
CUTBLOCK BOUNDARY TREATMENTS

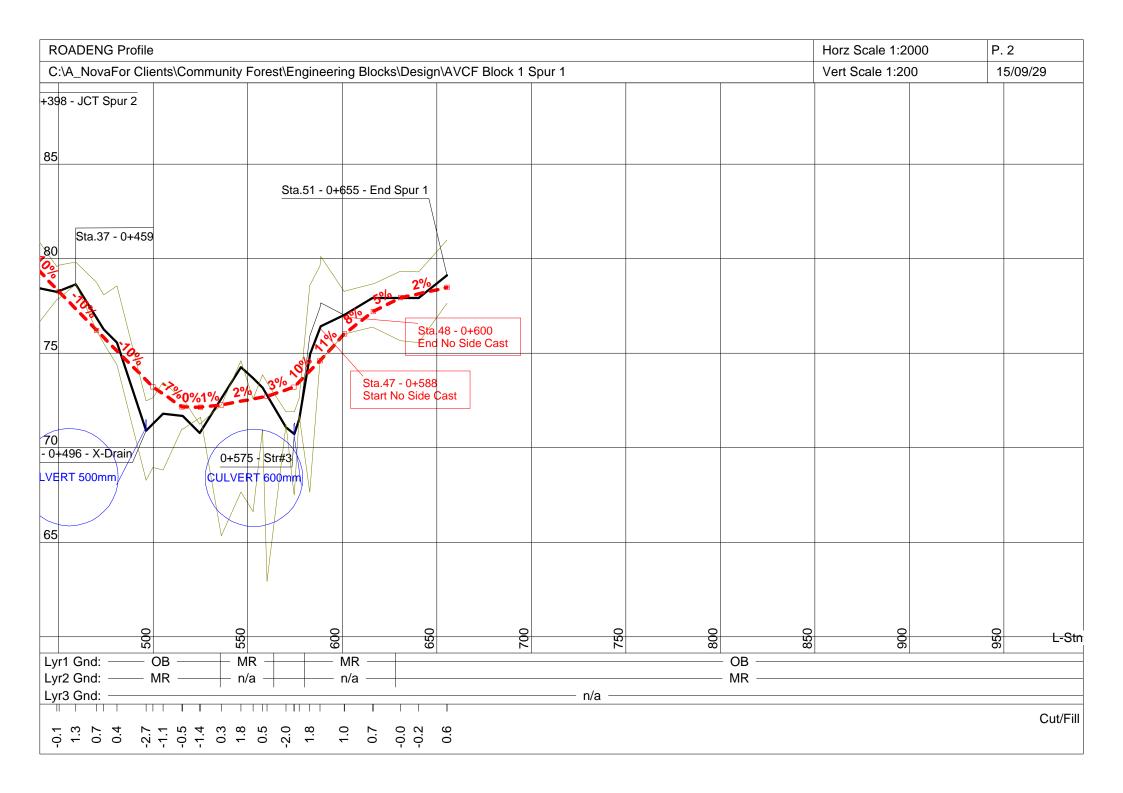
All marked boundary trees except snags and danger trees must remain standing during and after the completion of harvesting. Trees located along and adjacent to the cutblock edges (i.e. within the harvest boundary) that must be felled outside the harvest area must be recovered unless a physical, safety or environmental issue exists (e.g. deep gullies, steep breaks, fish creek, etc.). Trees that cannot be recovered may be left standing, if they are safe to leave, as wildlife trees. These trees must be recorded on a map and provided to TFN's engineering department once falling is complete. If you are unsure how to proceed, contact the AVCF.

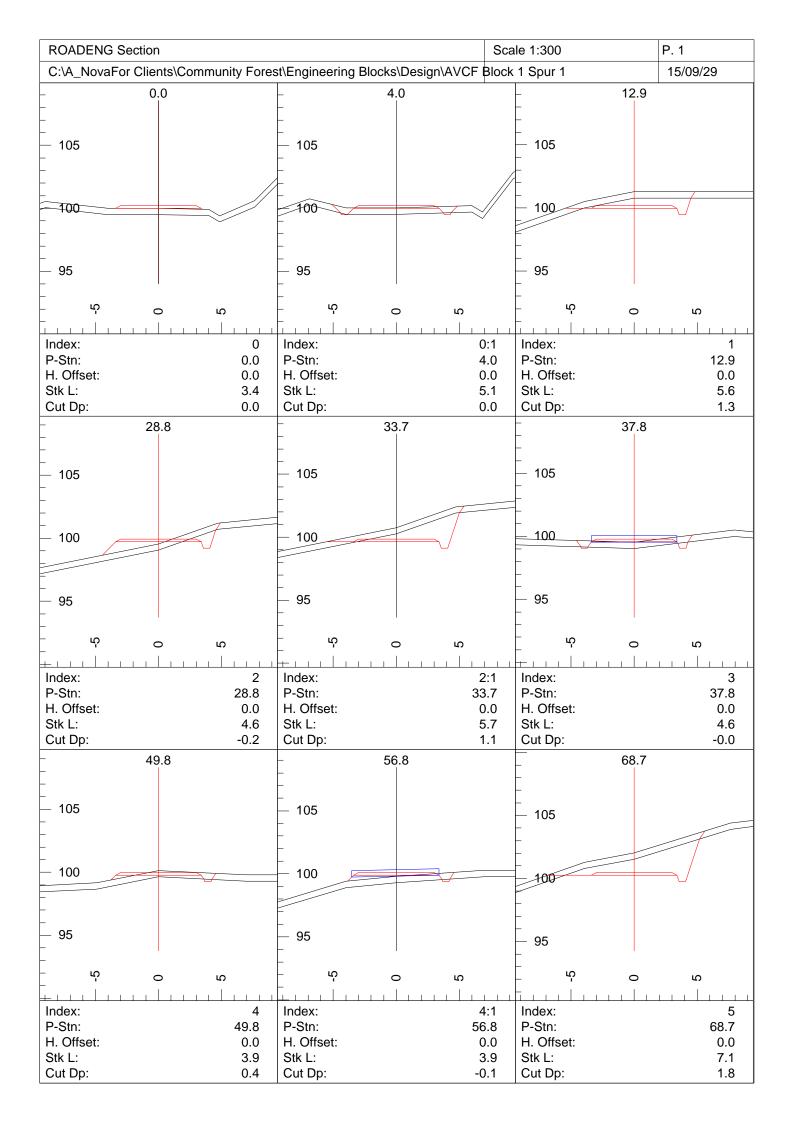
SAFETY

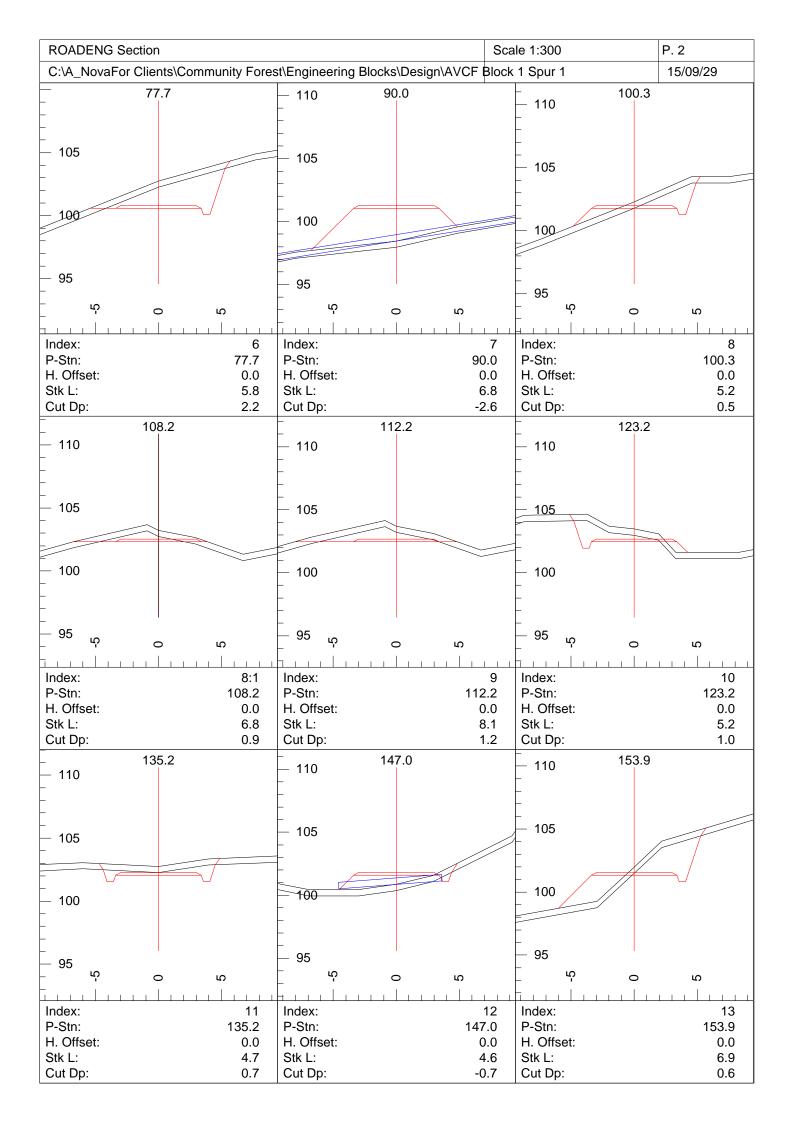
There is no other identified road or in-block safety hazards associated with Block 2. In the event any additional in-block safety hazards (temporary or permanent) are encountered or develop during road construction, a plan must be developed to address the hazard. Any identified permanent hazards must be reported back to the AVCF (using Hazard/Issue Report Form).

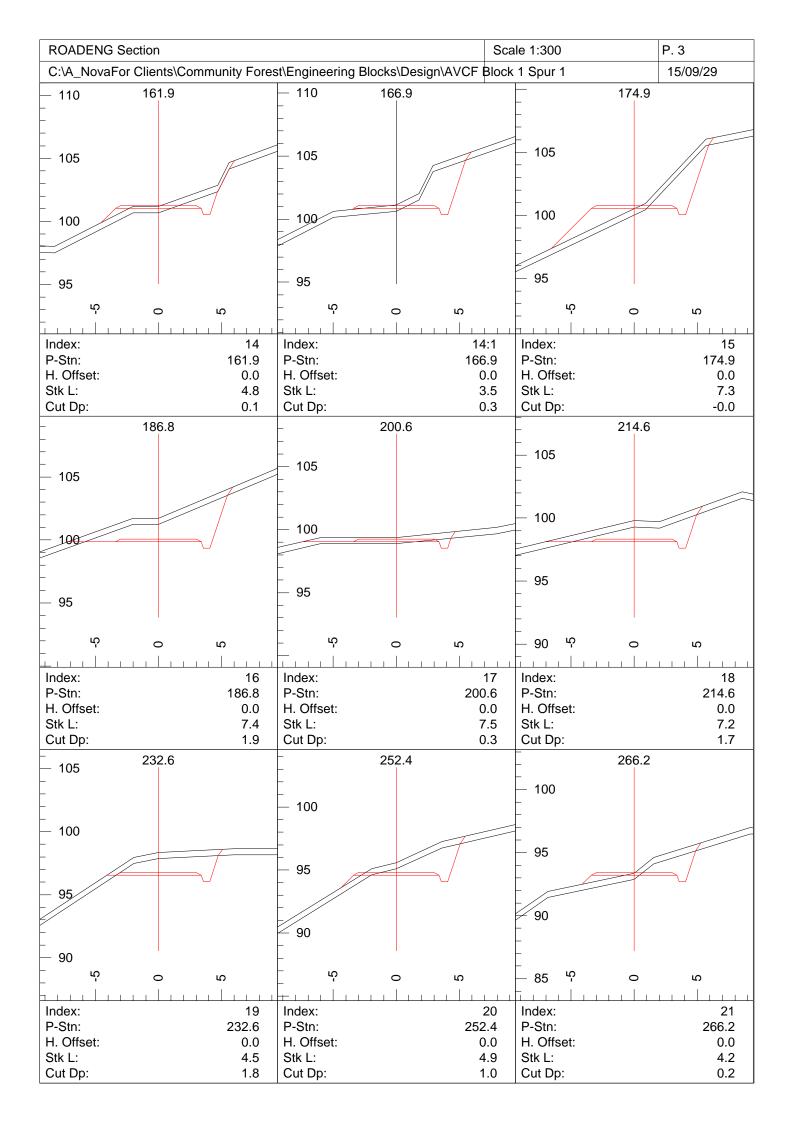
STEEP GRADES

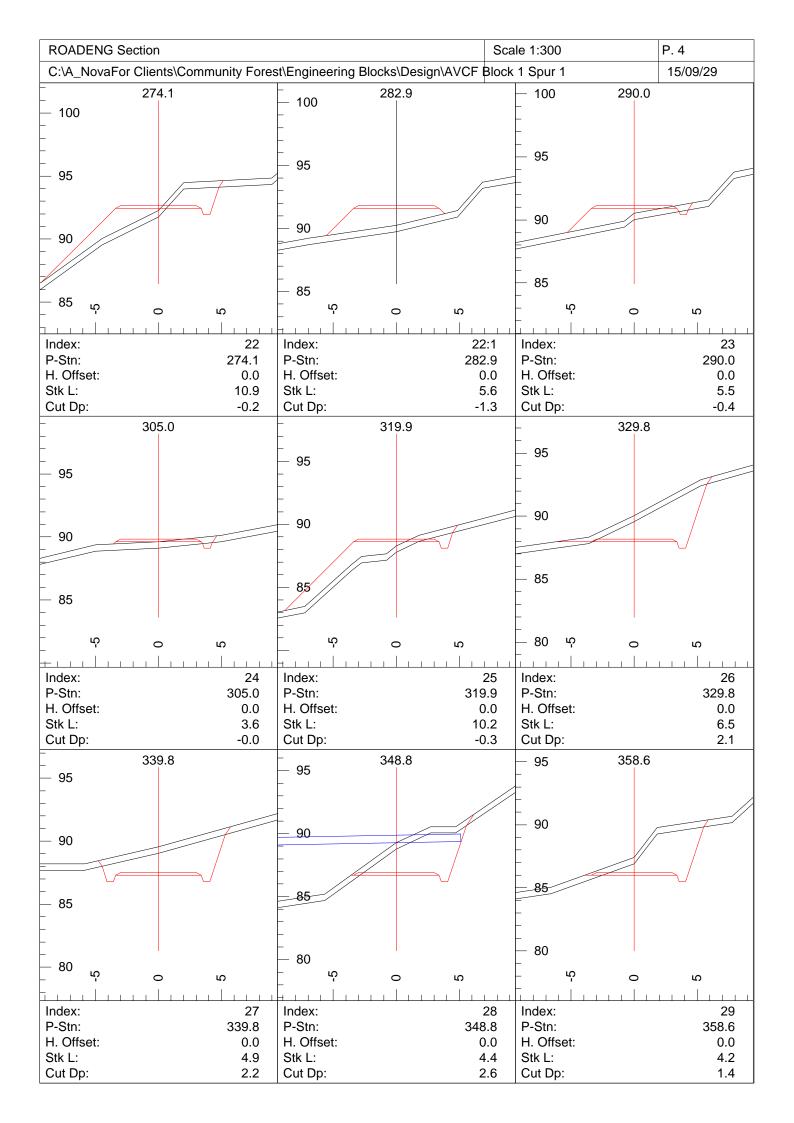

No new Roads have designed sections >18% but the built TA568 does contain sections of >18% grades. All other haul routes (pre-existing roads) to Sort have no sections of > 18%.

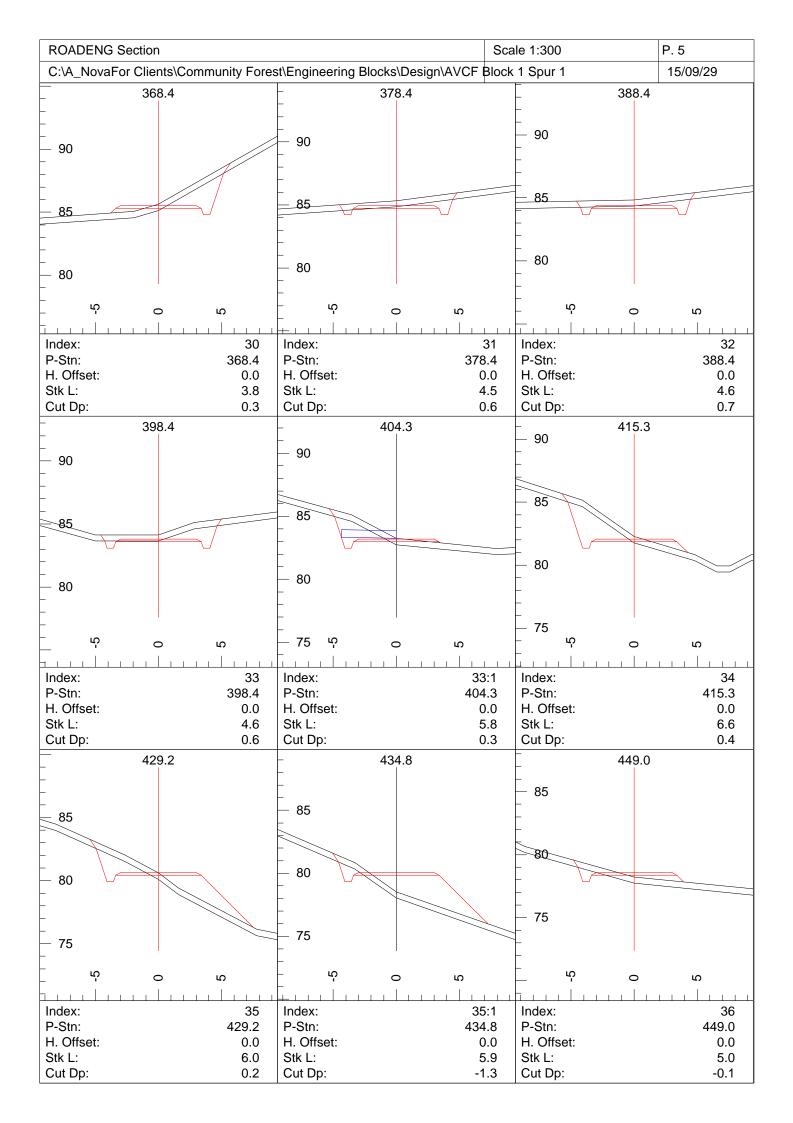

HAULING ON STEEP ROADS

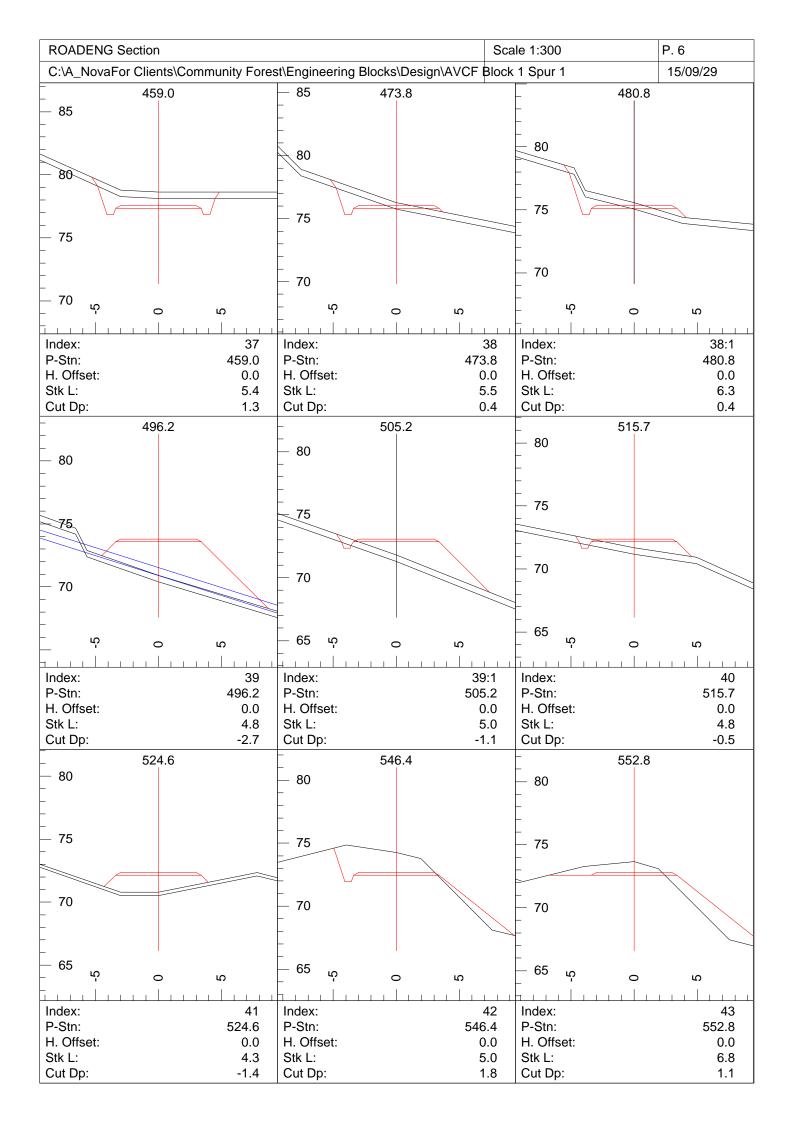

Before Hauling commences on any road section >18%, a steep grade assessment must be conducted by a qualified supervisor (i.e.: prime contractor supervisor or AVCF). If any road sections have been built with critical pitch grades greater than those identified in the table below then hauling cannot commence until a new assessment has been completed by the AVCF or the road has been reconstructed to (or less than) the original designed grade. Any new steep grades >18% not identified in the table below must also be assessed by the AVCF prior to hauling

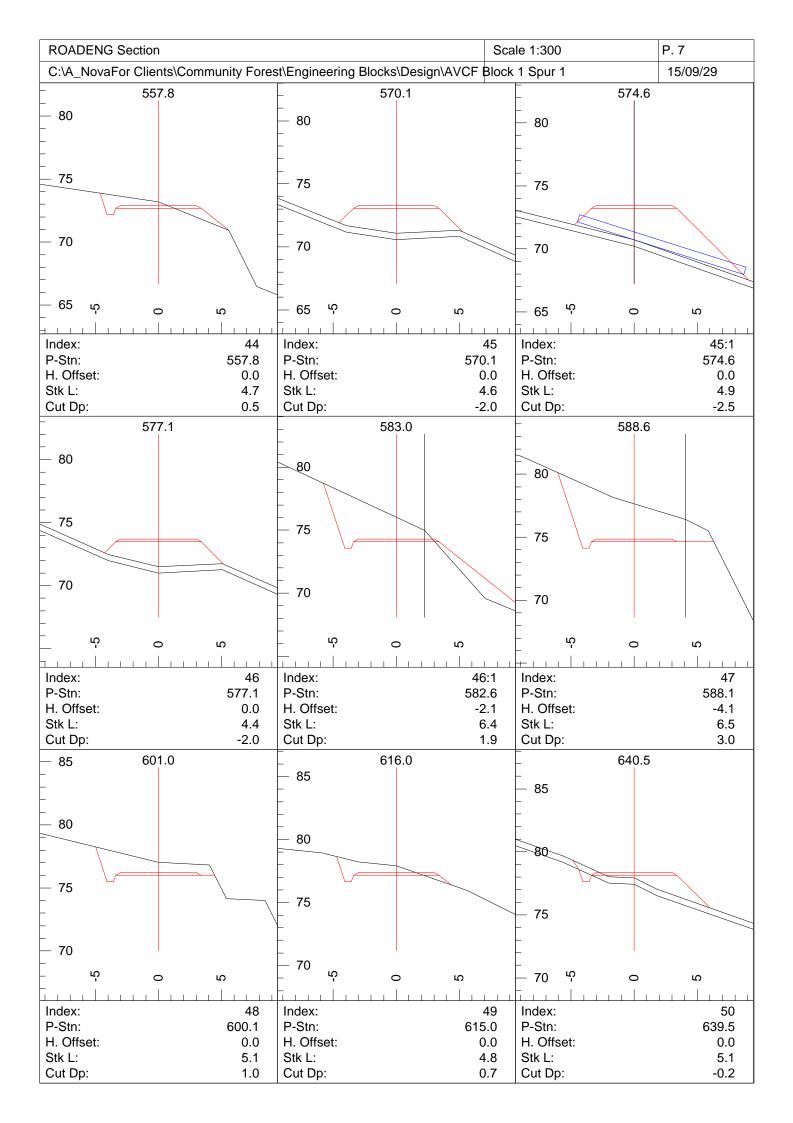

Monitor conditions continually and adjust hauling activities to suit the traction conditions. (E.g. suspend hauling activities--See Table below). If assumptions concerning truck configurations are altered, contact AVCF for additional instructions.

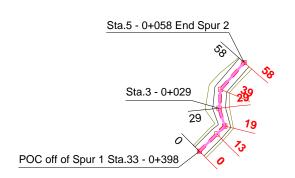

ROADENG Plan		Scale 1:2000	P. 1
:\A_NovaFor Clients\Community Forest\Eng	gineering Blocks\Design\AVCF	Block 1 Spur 1	15/09/29
Sta.43 - 0+553 - DL-DC2 Sta.47 - No Sidecast Start Sta.48 - No Sidecast End 600 616 640 640 655	233	378 368 Sta.28 - 04	0.6m 08 - JCT Spur 2 29 - 0+359 - JCT Spur 3 -349 - Str#4 - 0.6m
	0+108 - Boundary 100 78 50 38	Sta.12 - 0+147 -	

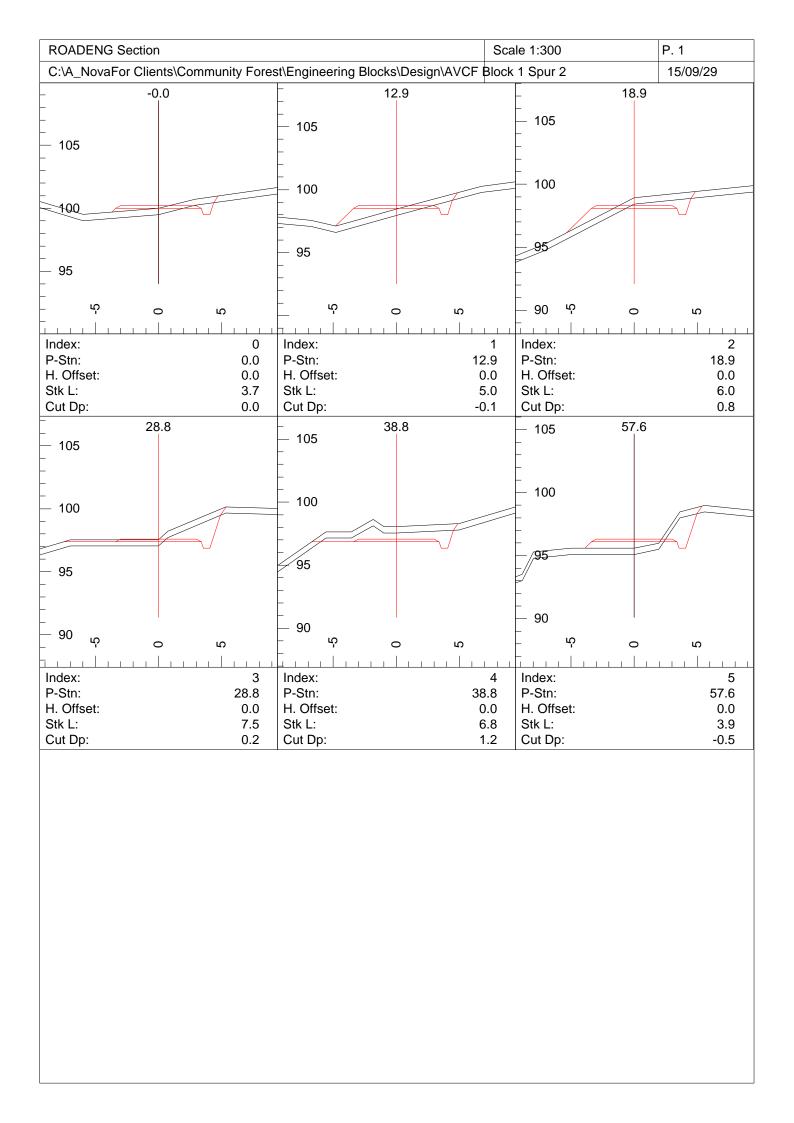






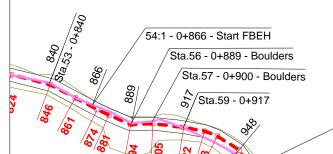


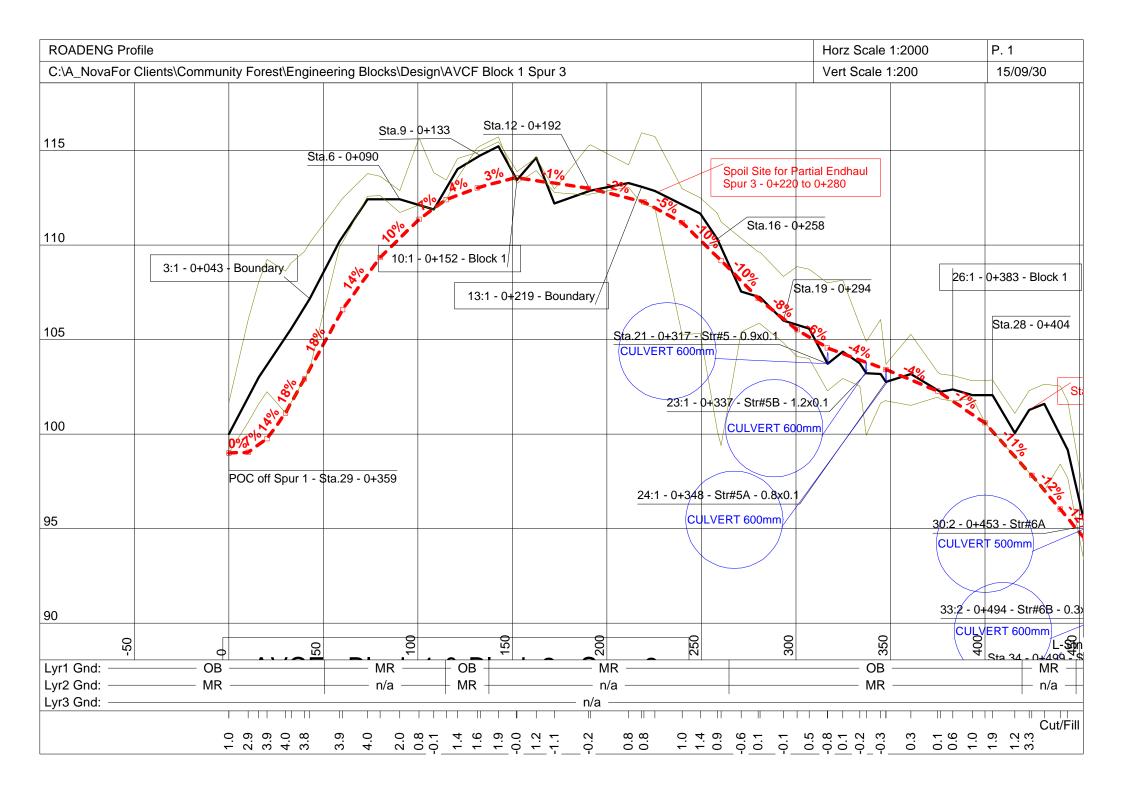


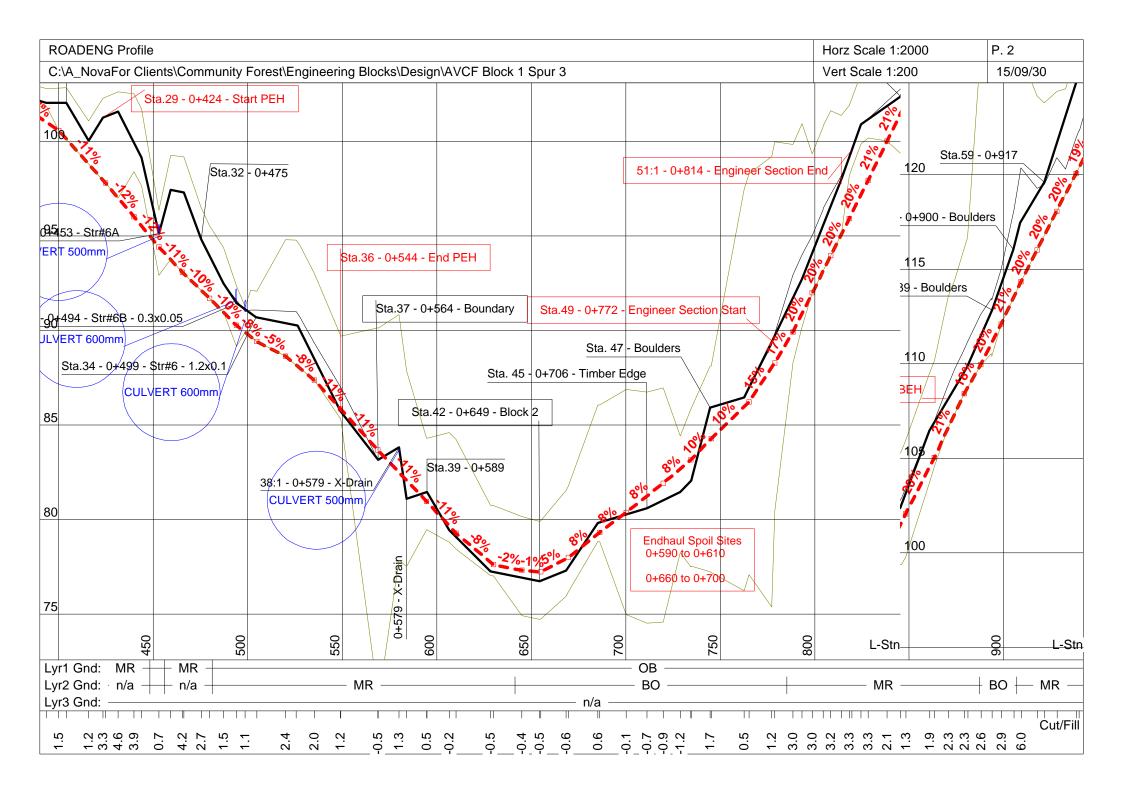


ROADENG Section	Scale 1:300	P. 8
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\	\Design\AVCF Block 1 Spur 1	15/09/29
655.4		
85		
65		
80		
75		
10		
- 0 - 5		
ndex: 51		
-Stn: 654.5		
l. Offset: 0.0		
tk L: 5.6		
ut Dp: 0.6		

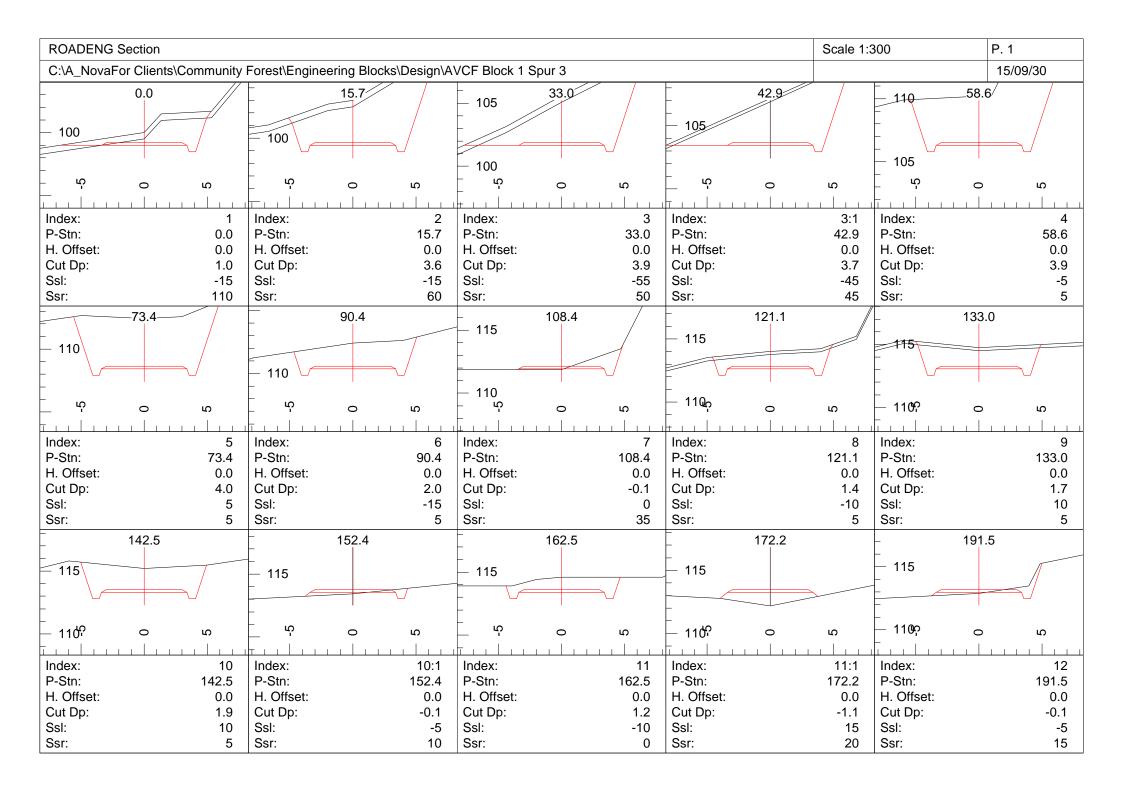
ROADENG Plan	Scale 1:2000	P. 1
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF I	Block 1 Spur 2	15/09/29

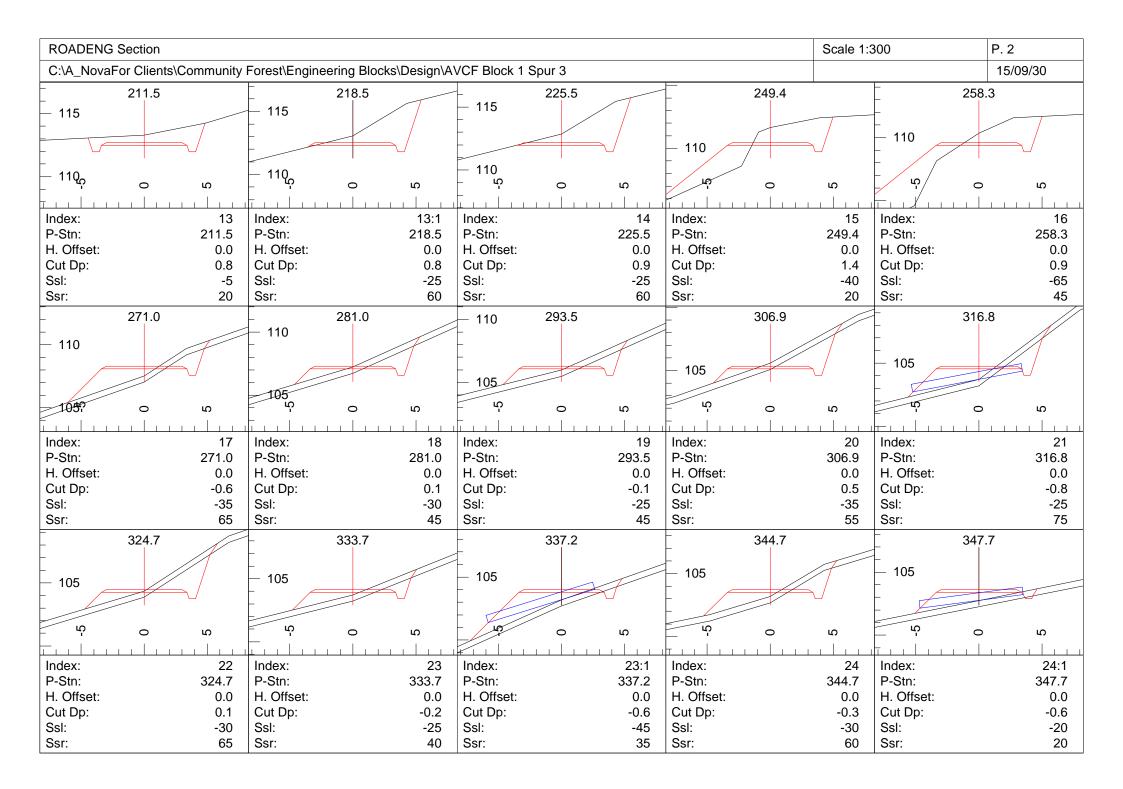

ROADENG F	Profile			Но	rz Scale 1:2000	P. 1	
C:\A_NovaFo	or Clients\Commun	ity Forest\Engine	eering Blocks\De	sign\AVCF BlVe	rt Scale 1:200	15/09/	/29
115							
110							
40-	AVC	F - Blo	ock 1 -	Spur 2	2		
105							
	POC off of Spur 1	Sta.33 - 0+398					
100							
95	Sta.3 - 0+029	3%					
St	a.5 - 0+058 End Spu	r 2					
90							
85							
0.0							
80							
75							
	0 0	100	150		250	300	L-Stn
Lyr1 Gnd: —				OB —			
Lyr2 Gnd: — Lyr3 Gnd: —				MR n/a			
Lyro Oria.	0.0 -0.0 1.2 1.2	-0.5		, u			Cut/Fill
	0 0 0 -	O .					

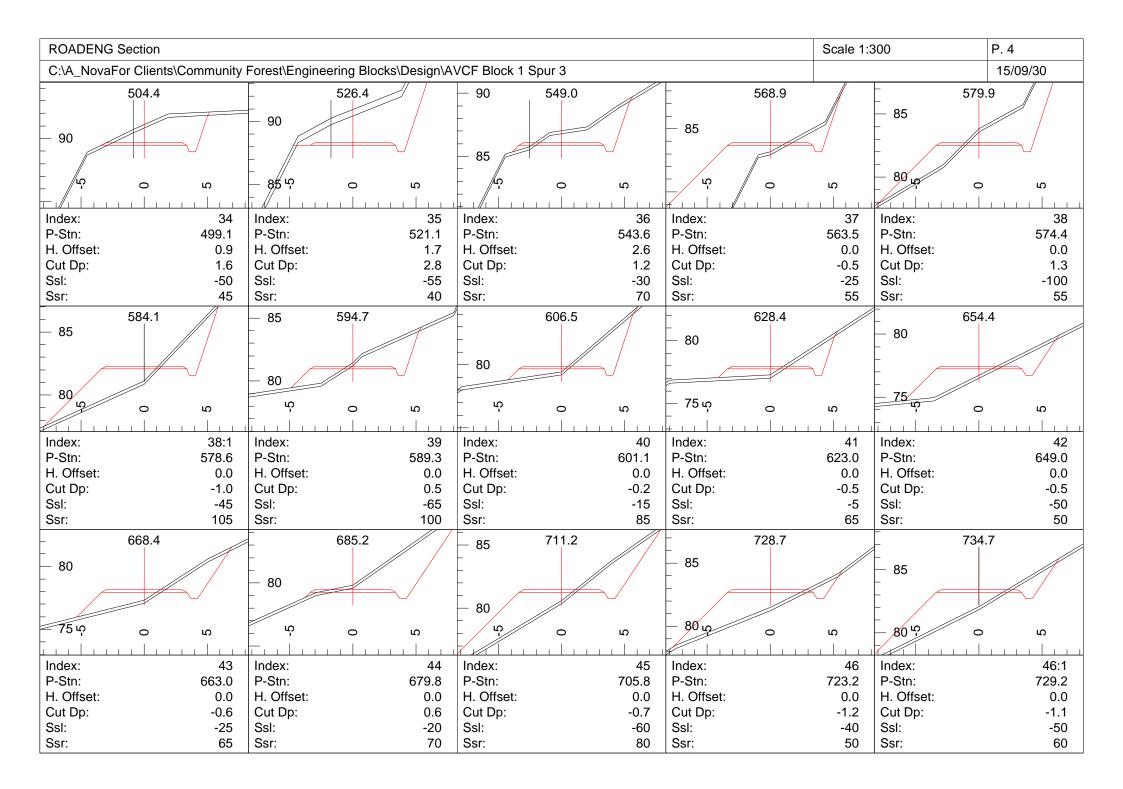


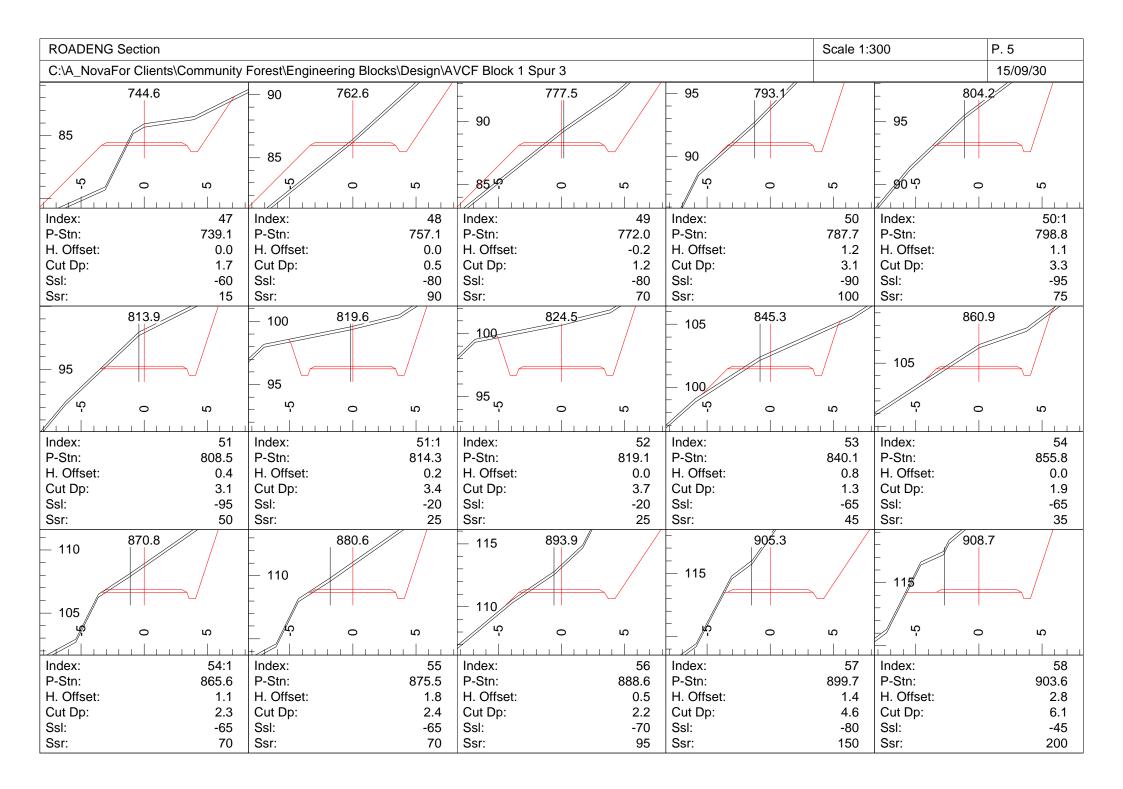

OADENG Plan	Scale 1:2000	P. 2
::\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30
		I
	3:1 - 0+043 - Boundary	Sta.6 - 0+090
		8/
	W T	
PC	OC off Spur 1 - Sta.29 - 0+359	13/
	OC off Spur 1 - Sta.29 - 0+359	8
	8	80 10
	To to	75 124 75 124
	\•	, dis

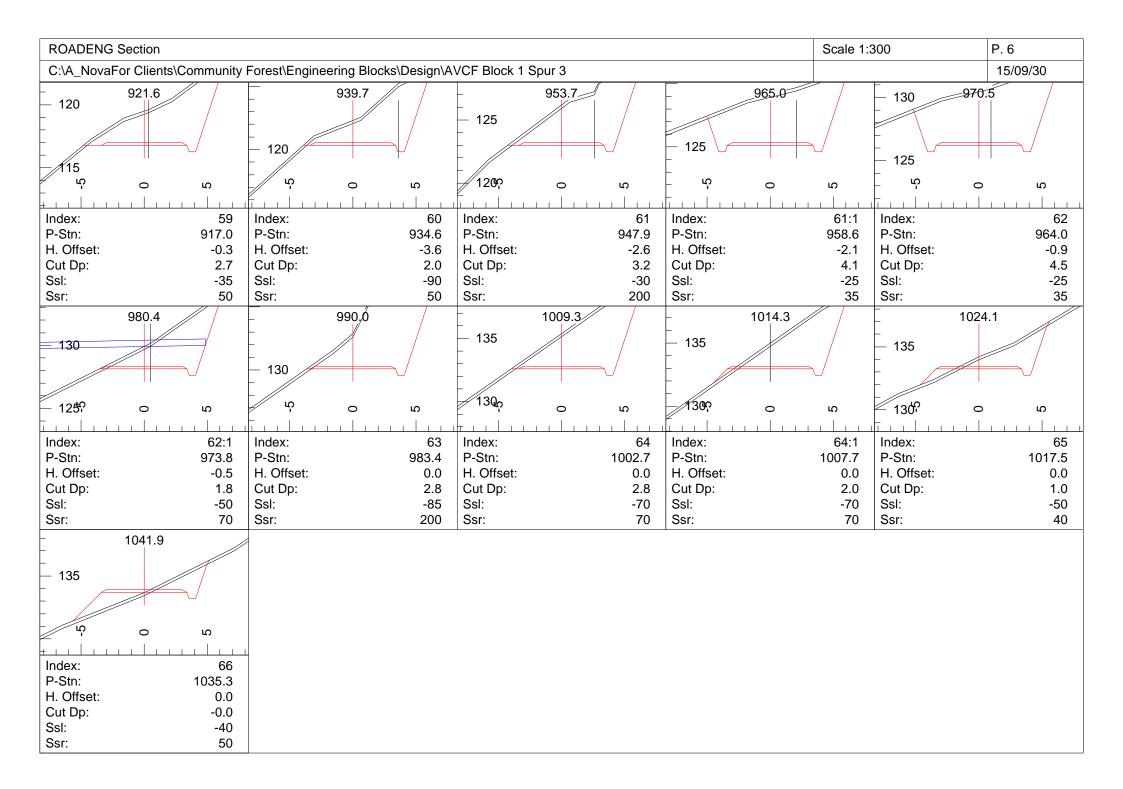
ROADENG Plan	Scale 1:2000	P. 3
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30
10:1 - 0+152 - Block 1 10:1 - 0+152 - Block 1 13:1 - 0+219 - Boundary 26:1 - 0+383 - Block 1 Sta.29 - 0+424 - Start PEH Sta.34 - 0+499 - Str#6 - 1.2x0.1 Sta.37 - 0+564 - Boundary 367 367 367 367 367	Sta.42 - 0+649 - Block	\$2 1. 45 - 0+706 - Timber E \$ta. 47 - Boulders \$82 \$82 \$10 \$10 \$10 \$10 \$10 \$10 \$10 \$10


ROADENG Plan	Scale 1:2000	P. 4
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30

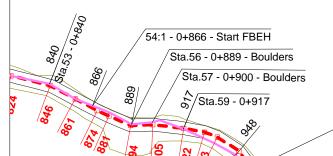


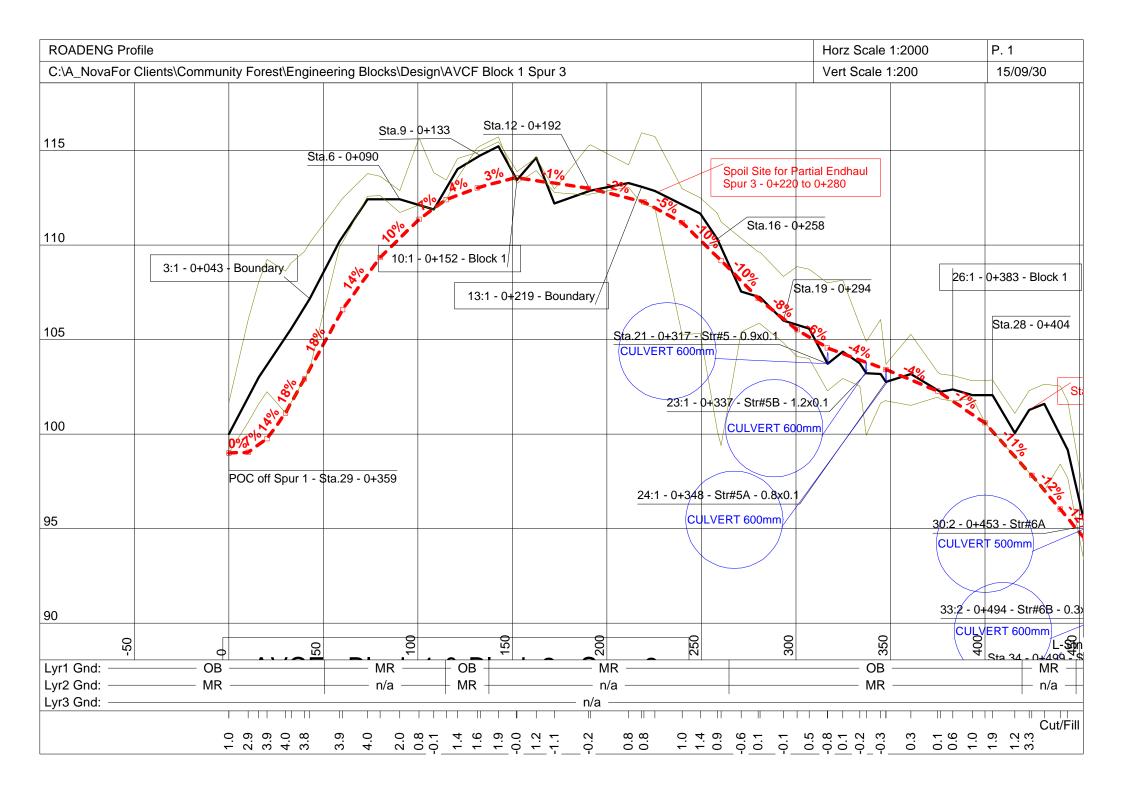


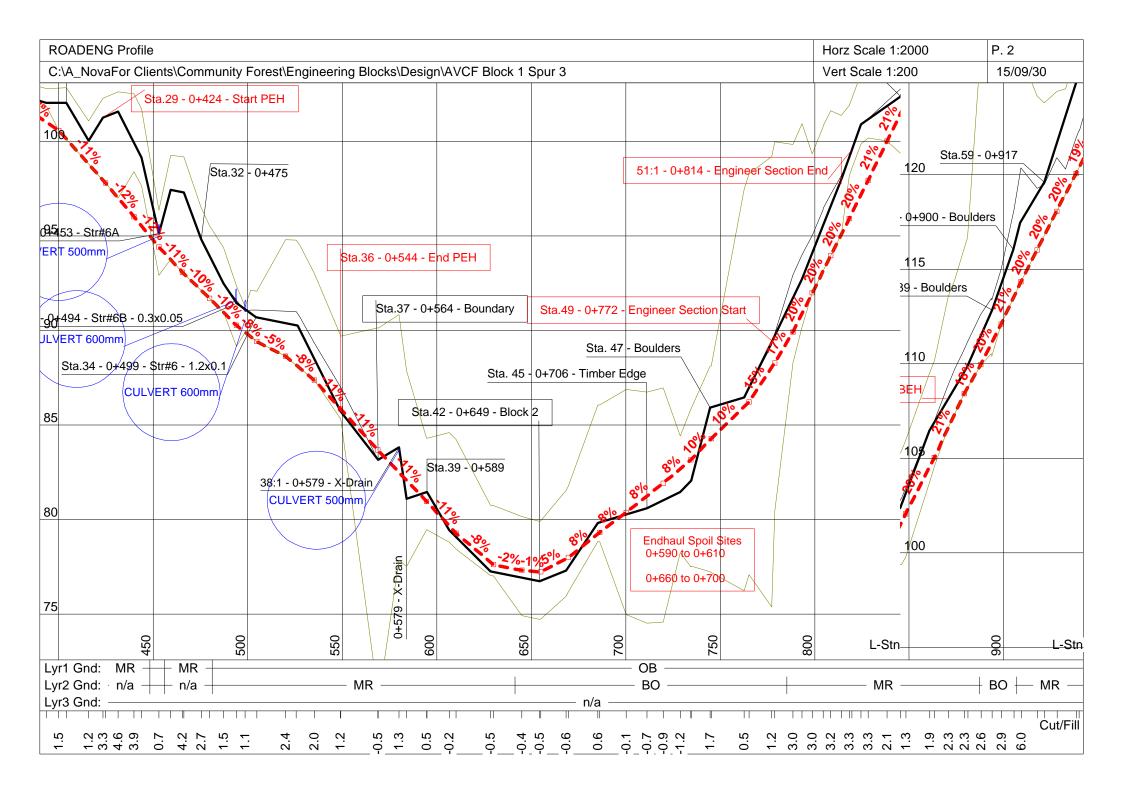

ROADENG Profile	Horz Scale 1:2000	P. 3
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3	Vert Scale 1:200	15/09/30
135 64:1 - 1+008 - End FBEH Sta.63 - 0+983 - Start FBEH		
130 - 0+959 - End FBEt 62:1 - 0+974 - X-Drain CULVERT 500mm		
0+917 120		
110		
950 1100 1250 1300	1350	00 L-Str
Lyr1 Gnd: OB Lyr2 Gnd: MR Lyr3 Gnd: n/a		
7 4 8 9 4 8 8 4 6 9 9 6 8 8 8 9 9 8 4 9 7 8 8 0 0		Cut/Fill



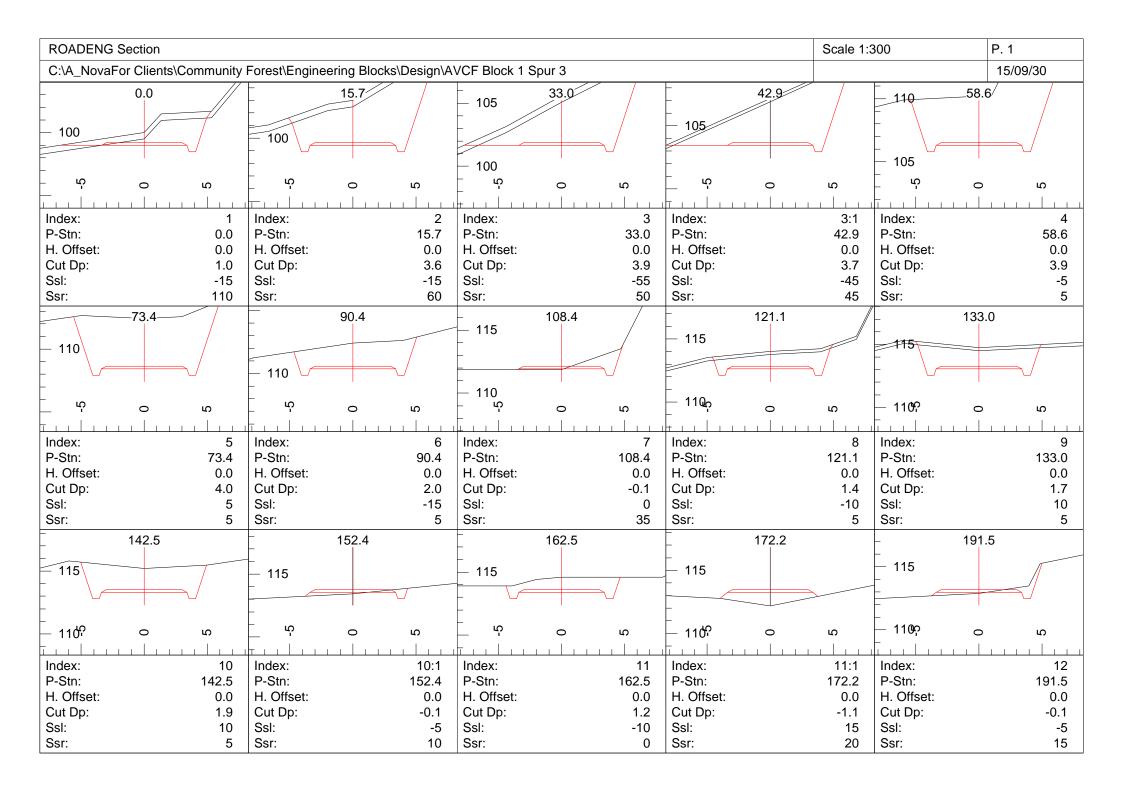
ROADENG Section									Scale 1:300		P. 3	P. 3		
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3										15	5/09/30			
	360.7		_	376.5		_	383.0		— 105	393.5			404.0	
405			105			— 105 —			-			-		
— 105 –														$\overline{\mathcal{A}}$
-		\rightarrow						$\leq \int$			\sim	100		\rightarrow
			100			- 100	ļ		_ 100 <u>_</u>			F		
— 100၀	0	2	_ 100္ဂ	0	2	– က်	0	2	_ · ·	0	2	င်	0	2
			<u> </u>			<u> </u>			<u> </u>			.		
Index:		25	Index:		26	Index:		26:1	Index:		27	Index:		28
P-Stn:		360.7	P-Stn:		376.5	P-Stn:		383.0	P-Stn:		393.5	P-Stn:		404.0
H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0
Cut Dp:		0.3	Cut Dp:		0.1	Cut Dp:		0.6	Cut Dp:		1.0	Cut Dp:		1.9
SsI:		-35	Ssl:		-10	Ssl:		-10	SsI:		0	Ssl:		-15
Ssr:		40	Ssr:		20	Ssr:		15	Ssr:		15	Ssr:		15
	415.8		F	423.5		+	431.5			443.7			453.0	
			100			— 100		/				_		
_ 100		7	100					/	-			F		7
-		> /	-		> /	<u> </u>		> /			→ /	95		\Rightarrow /
									— 95					
- 5	0	2	95 φ	0	2	_ 95 _ ဟု	0	2	- 5	0	2	2	0	2
H i			F			<u> </u>						<u>.</u>		
Index:		28:1	Index:		29	Index:		30	Index:		30:1	Index:		30:2
P-Stn:		415.8	P-Stn:		423.5	P-Stn:		431.5	P-Stn:		443.7	P-Stn:		453.0
H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0
Cut Dp:		1.2	Cut Dp:		3.3	Cut Dp:		4.6	Cut Dp:		3.6	Cut Dp:		0.7
Ssl:		-15	Ssl:		-200	Ssl:		-55	Ssl:		-30	Ssl:		-45
Ssr:		20	Ssr:		45	Ssr:		45	Ssr:		65	Ssr:		25
_	459.2		_	466.1			475.4		— 95	487.2			494.2	
			F /			— 9 5			H			1		
95			95			<u> </u>		/						
-		> /	Z		\			= /			_ /	- 90 <i>//</i>		> /
-/			F						90			_ 90		
	_		00.10	_		— 90 ₁₀	_			_		- //_		
2	0 -	. 2	80 rb	0 -	- 5		0 -	- 5	-	0 -	- 5	-5	0 -	- 5
#			landay:		04:4	la desc			Harden:			la day:		00:0
Index:		31 450.2	Index:		31:1	Index:		32 475.4	Index:		33	Index:		33:2
P-Stn: H. Offset:		459.2 0.0	P-Stn: H. Offset:		466.1 0.0	P-Stn: H. Offset:		475.4	P-Stn: H. Offset:		487.2 0.0	P-Stn: H. Offset:		494.1
Cut Dp:		3.7	Cut Dp:		4.3	Cut Dp:		0.0 2.7	Cut Dp:		1.5	Cut Dp:		1.0 1.3
Ssl:		-65	Ssl:		4.3 -45	Ssl:		-45	Ssl:		-25	Ssl:		-65
Ssr:		30	Ssr:		30	Ssr:		-43	Ssr:		-25 45	Ssr:		-03 15
301.						301.			J 301.					10

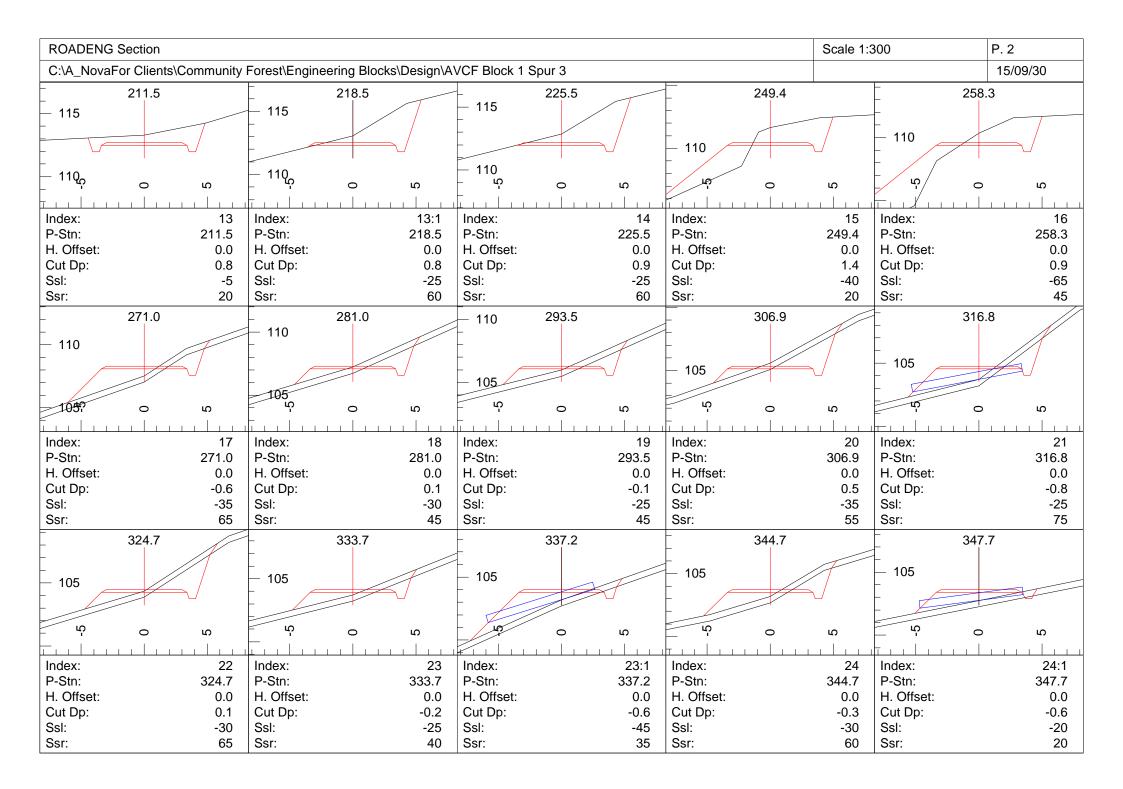


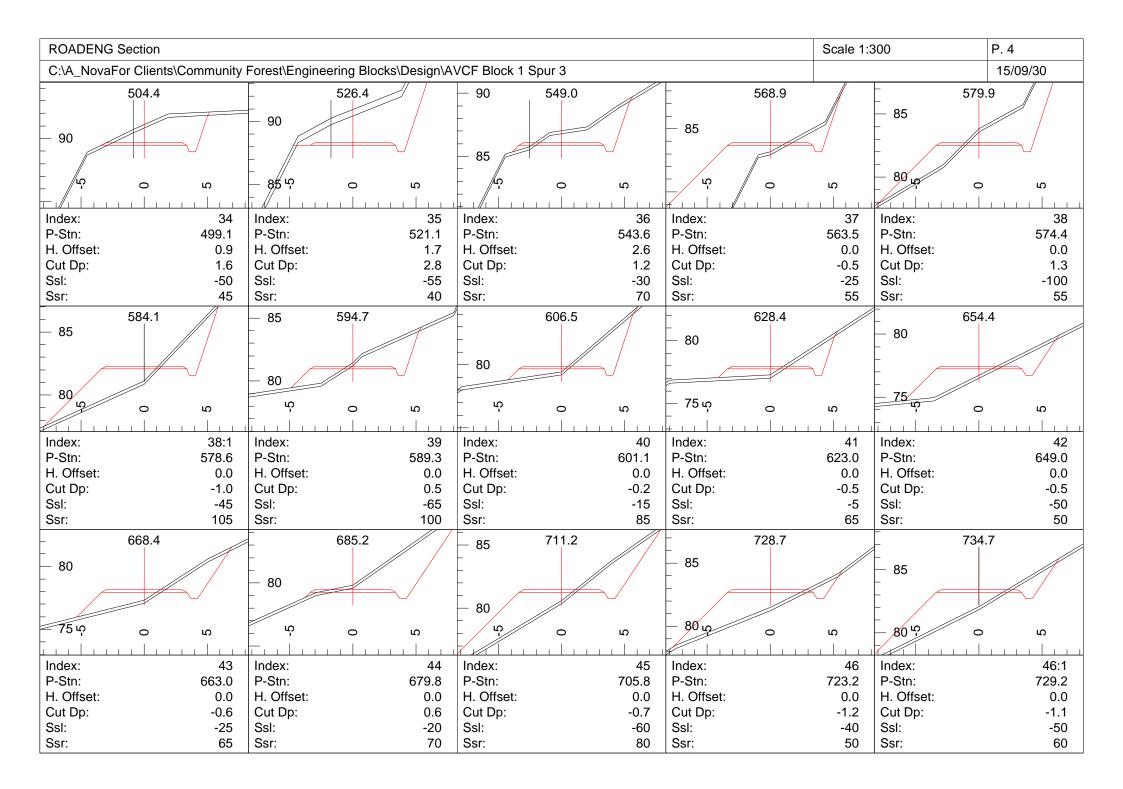


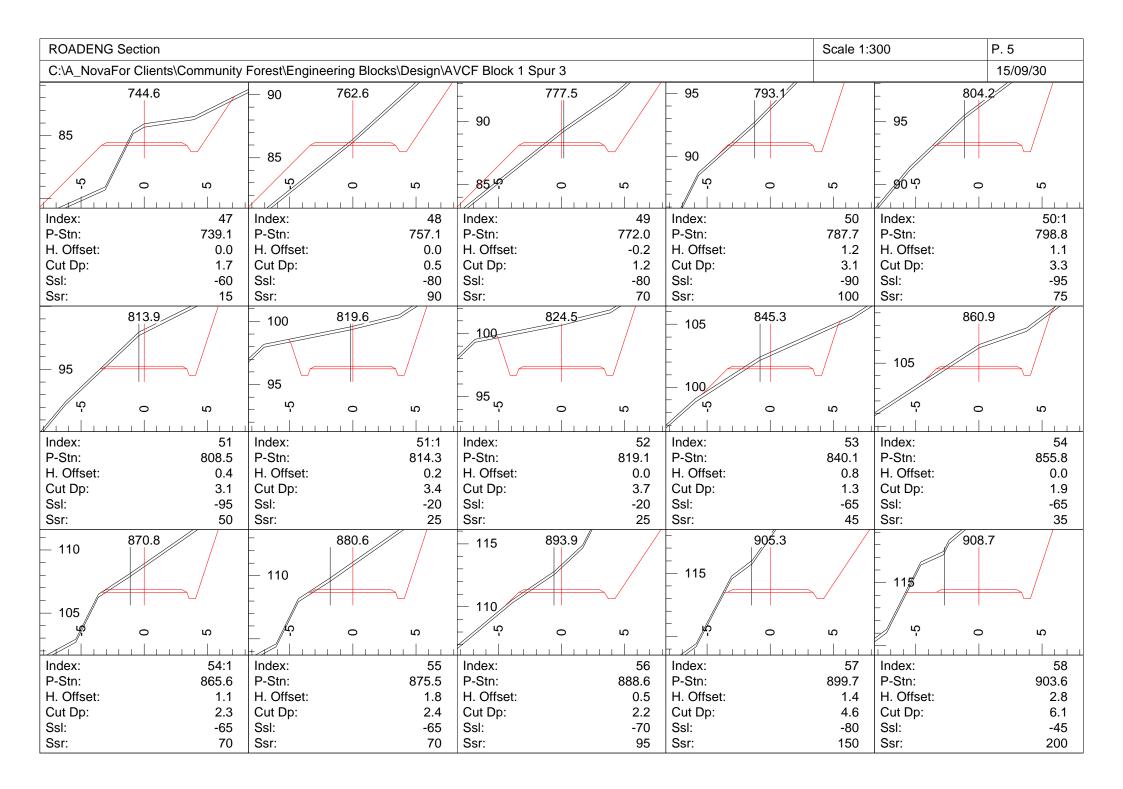

OADENG Plan	Scale 1:2000	P. 2
::\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30
		I
	3:1 - 0+043 - Boundary	Sta.6 - 0+090
		8/
	W T	
PC	OC off Spur 1 - Sta.29 - 0+359	13/
	OC off Spur 1 - Sta.29 - 0+359	8
	8	80 10
	To to	75 124 75 124
	\•	, dis

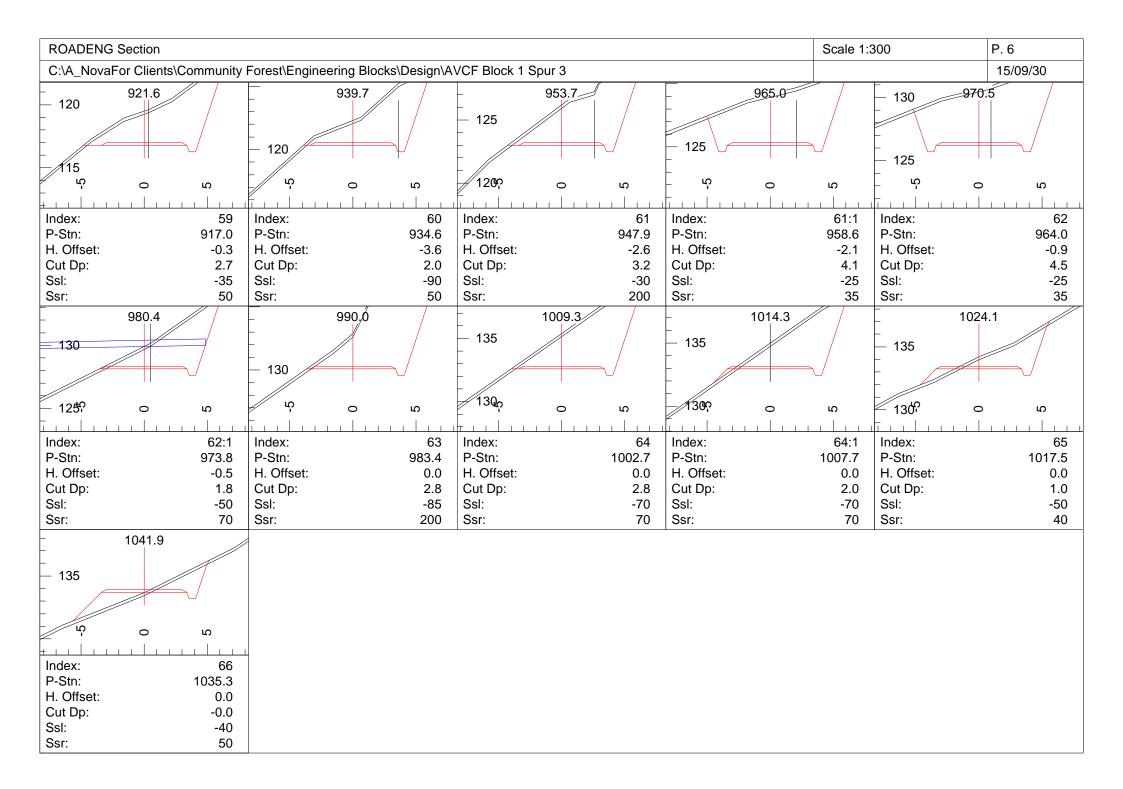
ROADENG Plan	Scale 1:2000	P. 3
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30
13:1 - 0+219 - Boundary 26:1 - 0+383 - Block 1 Sta. 29 - 0+424 - Start PEH Sta. 34 - 0+499 - Str#6 - 1.2x0.1 Sta. 37 - 0+564 - Boundary 23:1 - 0+337 - Str#5B - 1.2x0.1 24:1 - 0+348 - Str#5A - 0.8x0.1	Sta.42 - 0+649 - Block 2 Sta. 45 -	2

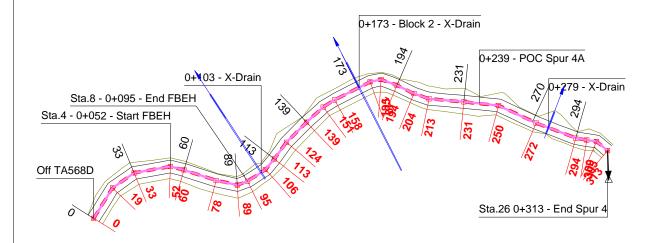

ROADENG Plan	Scale 1:2000	P. 4
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3		15/09/30

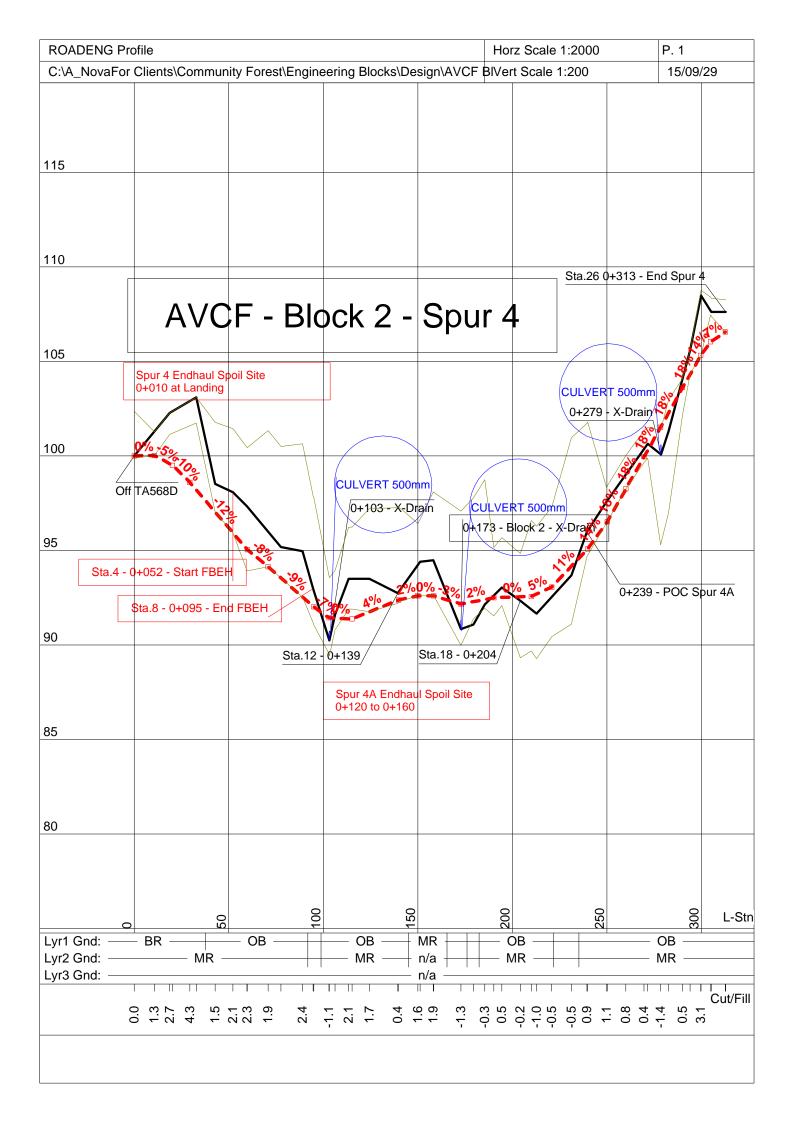


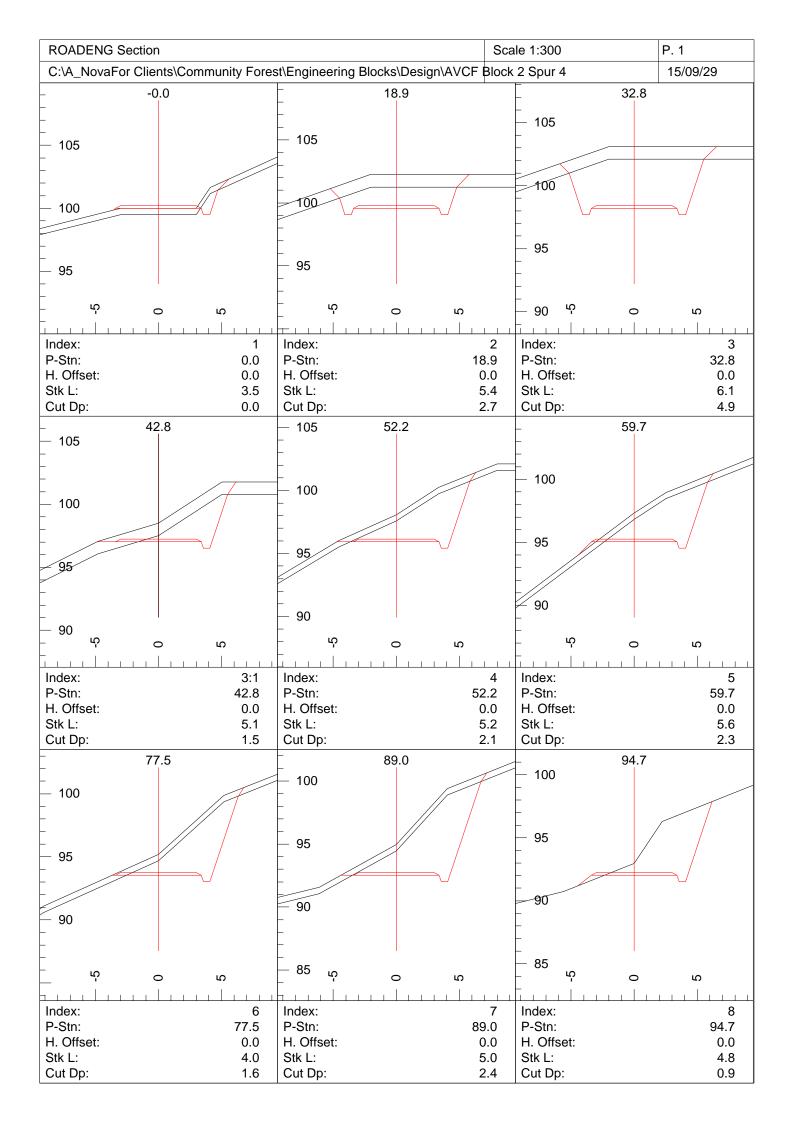


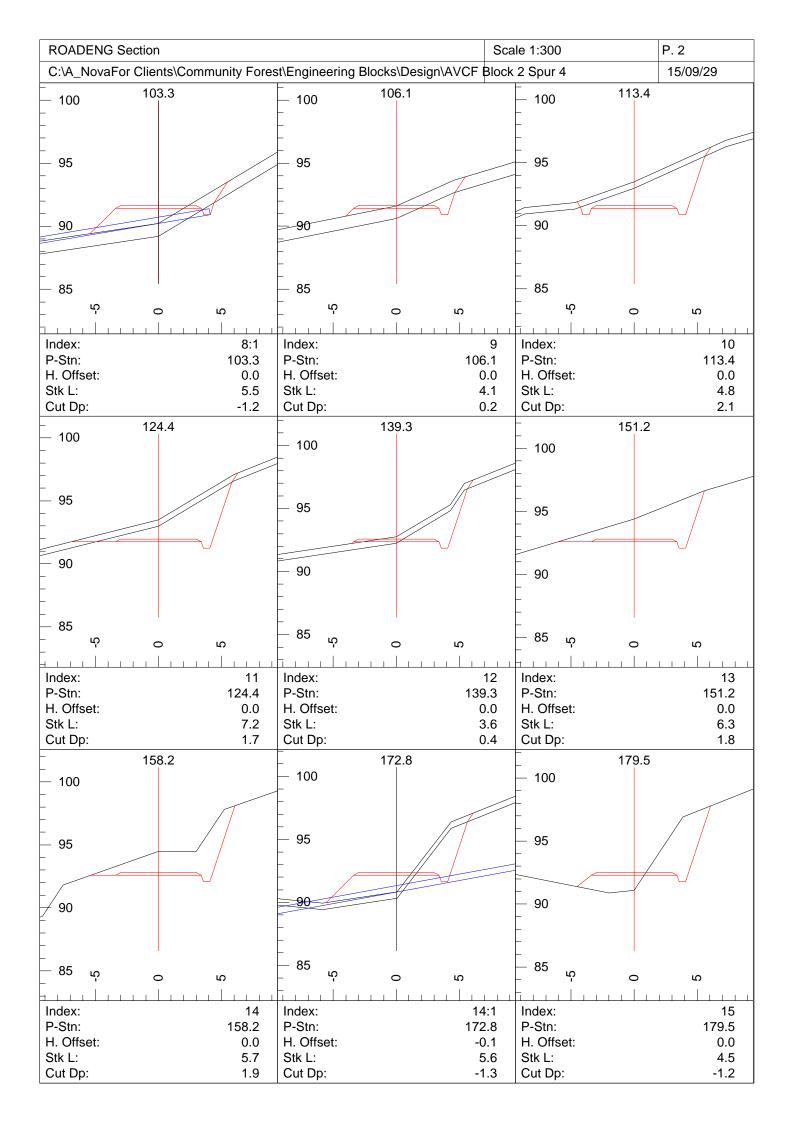

ROADENG Profile	Horz Scale 1:2000	P. 3
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3	Vert Scale 1:200	15/09/30
135 64:1 - 1+008 - End FBEH Sta.63 - 0+983 - Start FBEH		
130		
130 1 - 0+959 - End FBEt Sta.66 - 1+035 - End Spur 3 62:1 - 0+974 - X-Drain CULVERT 500mm		
0+917 120		
115 8°		
110		
1100 1150 1250	1300	00 L-Str
Lyr1 Gnd: OB Lyr2 Gnd: MR Lyr3 Gnd: n/a		
0. 4		Cut/Fill

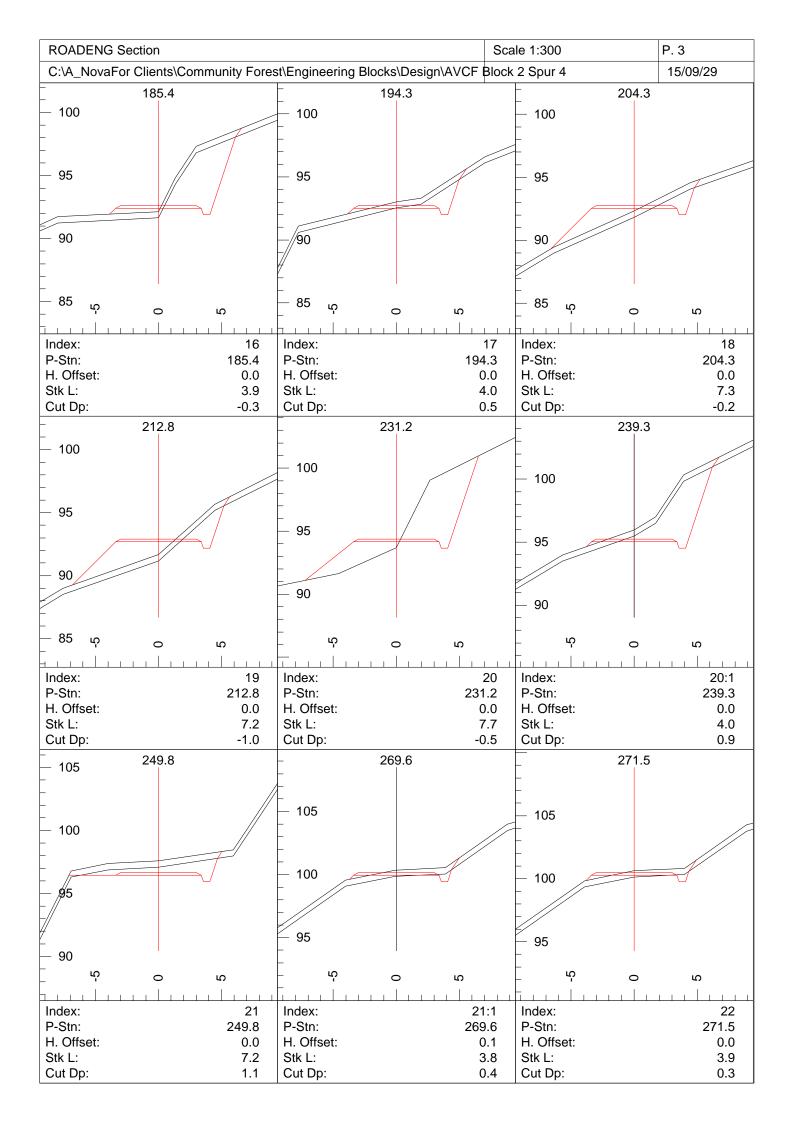


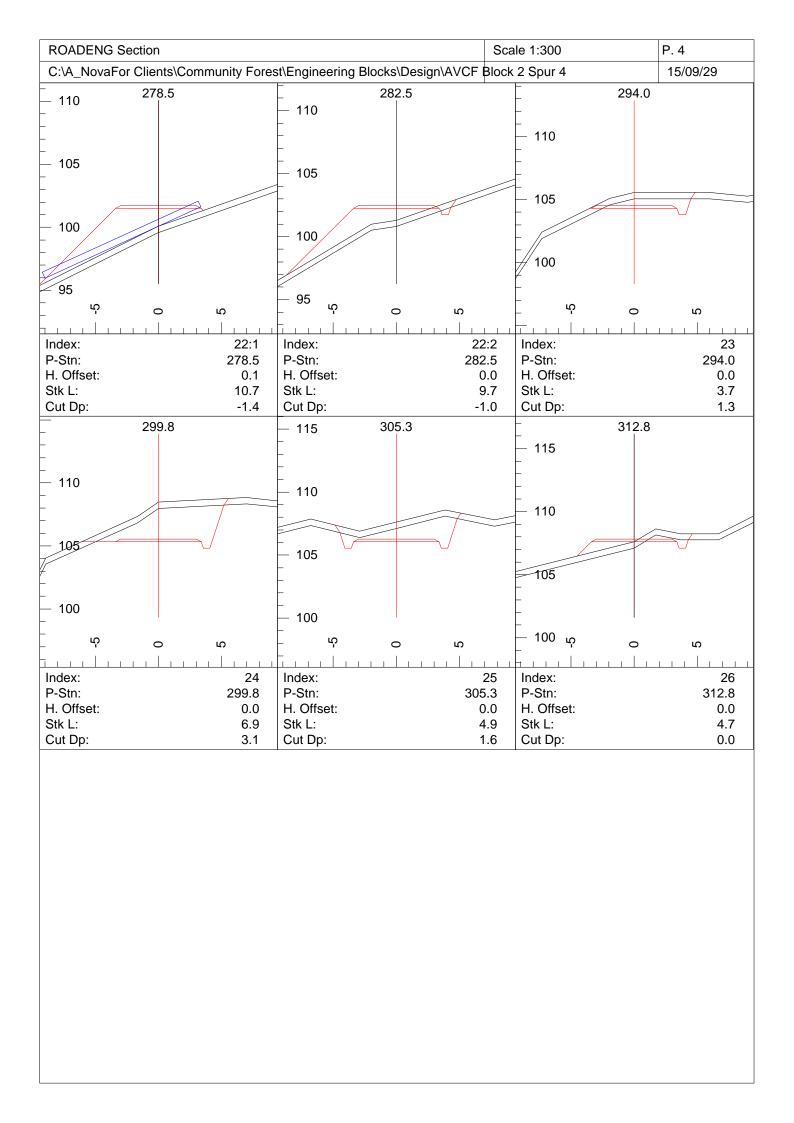

ROADENG Section Scale 1:								Scale 1:3	300	P. 3	3			
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF Block 1 Spur 3									15	5/09/30				
_	360.7		_	376.5		_	383.0		— 105	393.5			404.0	
405			105			— 105 —			-			F		
— 105 –														
<u> </u>		\rightarrow						$\leq \int$			\sim	100		\rightarrow
			100			- 100	I		_ 100 <u>_</u>			F		
— 100ဝှ	0	2	_ 100္ဂ	0	2	– က်	0	2	_ · ·	0	2	င်	0	2
			<u> </u>			<u> </u>			<u> </u>			<u> </u>		
Index:		25	Index:		26	Index:		26:1	Index:		27	Index:		28
P-Stn:		360.7	P-Stn:		376.5	P-Stn:		383.0	P-Stn:		393.5	P-Stn:		404.0
H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0
Cut Dp:		0.3	Cut Dp:		0.1	Cut Dp:		0.6	Cut Dp:		1.0	Cut Dp:		1.9
SsI:		-35	Ssl:		-10	Ssl:		-10	SsI:		0	Ssl:		-15
Ssr:		40	Ssr:		20	Ssr:		15	Ssr:		15	Ssr:		15
	415.8		F	423.5		+	431.5			443.7			453.0	
			100			— 100		/				_		
_ 100		7	100					/	-			F		7
		> /	-		> /	<u> </u>		> /			→ /	95		\Rightarrow /
									— 95					
- 5	0	2	95 φ	0	2	_ 95 _ ဟု	0	2	- 5	0	2	2	0	2
H i			F			<u> </u>						Ē i		
Index:		28:1	Index:		29	Index:		30	Index:		30:1	Index:		30:2
P-Stn:		415.8	P-Stn:		423.5	P-Stn:		431.5	P-Stn:		443.7	P-Stn:		453.0
H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0	H. Offset:		0.0
Cut Dp:		1.2	Cut Dp:		3.3	Cut Dp:		4.6	Cut Dp:		3.6	Cut Dp:		0.7
Ssl:		-15	Ssl:		-200	Ssl:		-55	Ssl:		-30	Ssl:		-45
Ssr:		20	Ssr:		45	Ssr:		45	Ssr:		65	Ssr:		25
_	459.2		_	466.1			475.4		95	487.2			494.2	
		/	F /		/	— 9 5		//				_		
95			95			<u> </u>		/						
-		_ /	Z		\			= /			_ /	- 90 <i>//</i>		> /
-/			F						90			_ 90		
	_		_ 90 ტ	_		بر 90 س	_		L 10	_		2-	_	
⊢	0 -	. 2	- 90 Y	0	- 5		0 -	- 5	ļ ,	0 -	- 5	7	0 -	- 5
#		24	Indox		24.4	Indox			Indox			Indox		22.0
Index:		31 450.2	Index:		31:1	Index:		32 475.4	Index:		33	Index:		33:2
P-Stn: H. Offset:		459.2 0.0	P-Stn: H. Offset:		466.1 0.0	P-Stn: H. Offset:		475.4	P-Stn: H. Offset:		487.2 0.0	P-Stn: H. Offset:		494.1
Cut Dp:		3.7	Cut Dp:		4.3	Cut Dp:		0.0 2.7	Cut Dp:		1.5	Cut Dp:		1.0 1.3
Ssl:		-65	Ssl:		4.3 -45	Ssl:		-45	Ssl:		-25	Ssl:		-65
Ssr:		30	Ssr:		30	Ssr:		-43	Ssr:		-25 45	Ssr:		15
301.						301.			J 301.					10



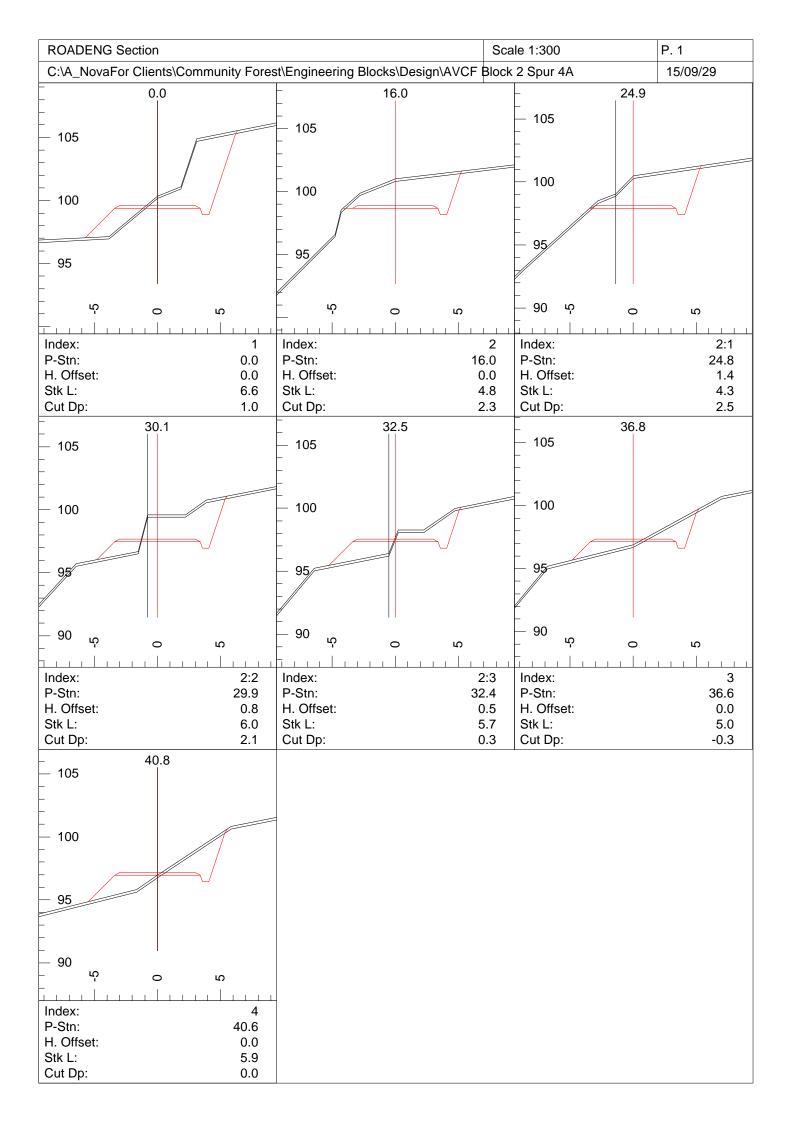


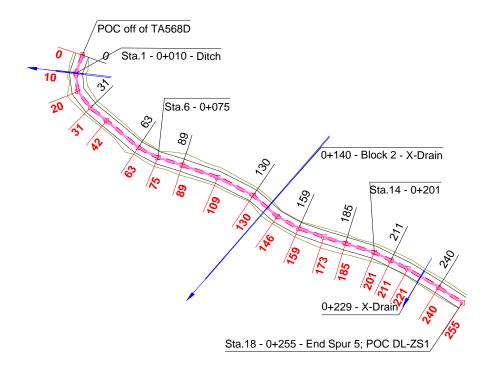

ROADENG Plan	Scale 1:2000	P. 1
C:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF	Block 2 Spur 4	15/09/29

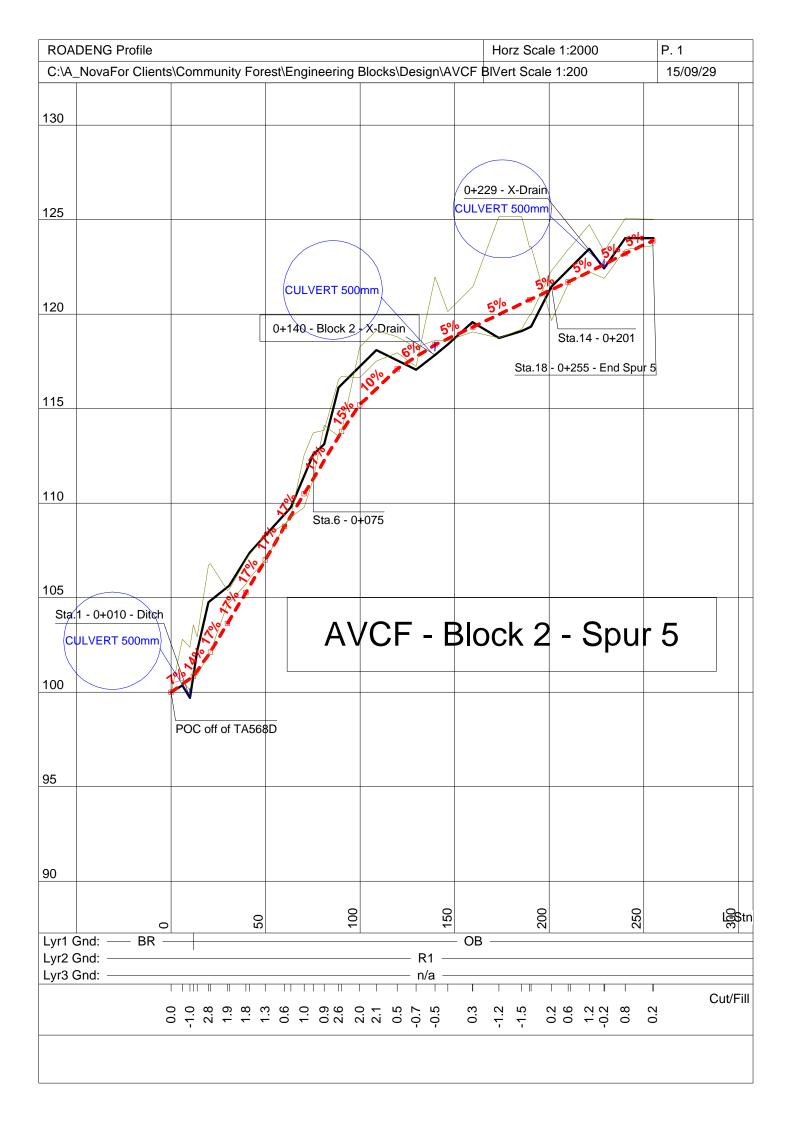


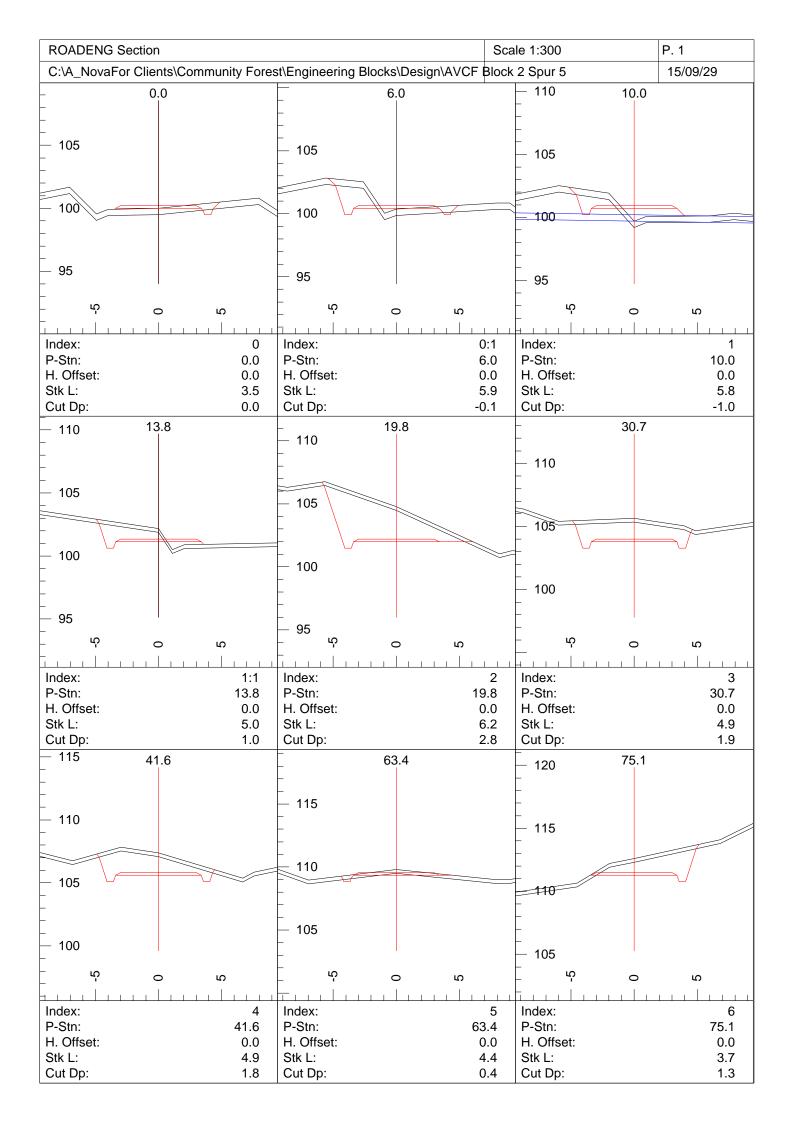


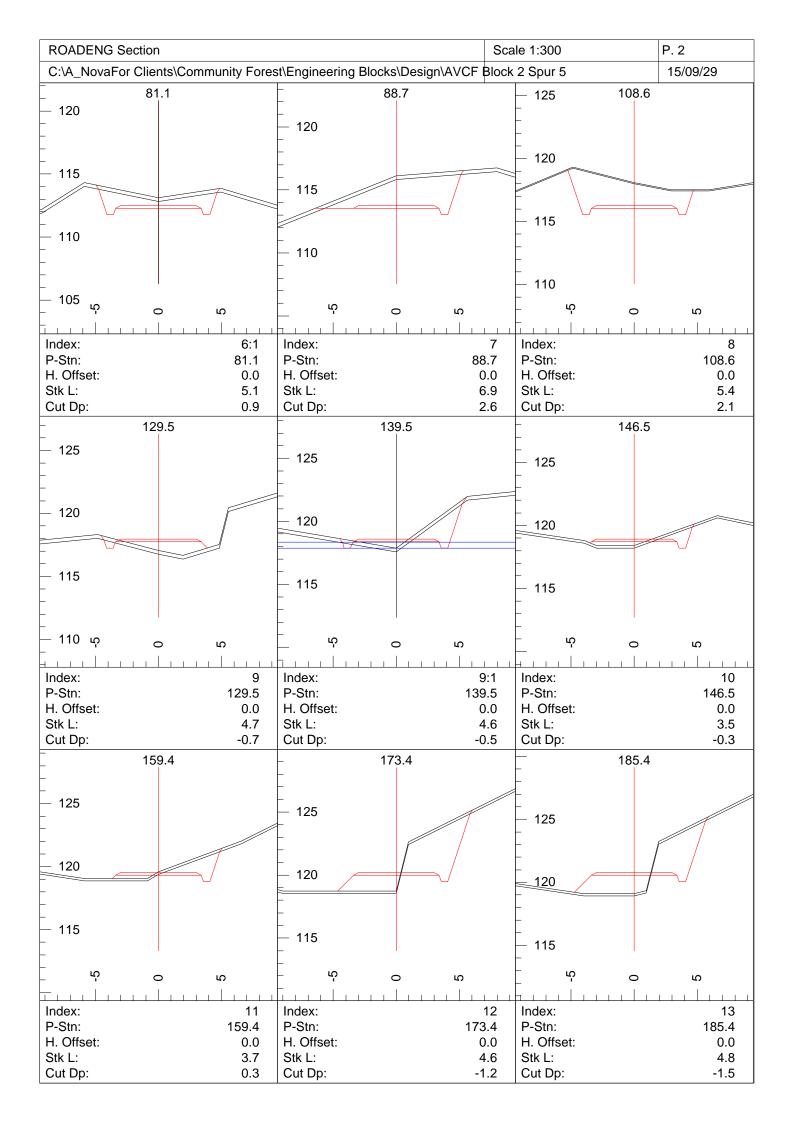
ROADENG Profile			Horz S	Scale 1:2000	P. 2
C:\A_NovaFor Clients\Comr	nunity Forest\Engine	eering Blocks\Desi	gn\AVCF BIVert S	cale 1:200	15/09/29
125					
120					
120					
115					
110					
pur 4					
F 06					
[/					
/					
100					
100					
95					
C Spur 4A					
S Spair 471					
90					
85					
	_				
350	400	450	550	009	OS L-Stn
Lyr1 Gnd:	٧		В —	9	9
Lyr2 Gnd:		M	- R		
		-			Cut/Fill
£ 7. £ 6. £ 7.					Cuvrill
~ ~ ~					

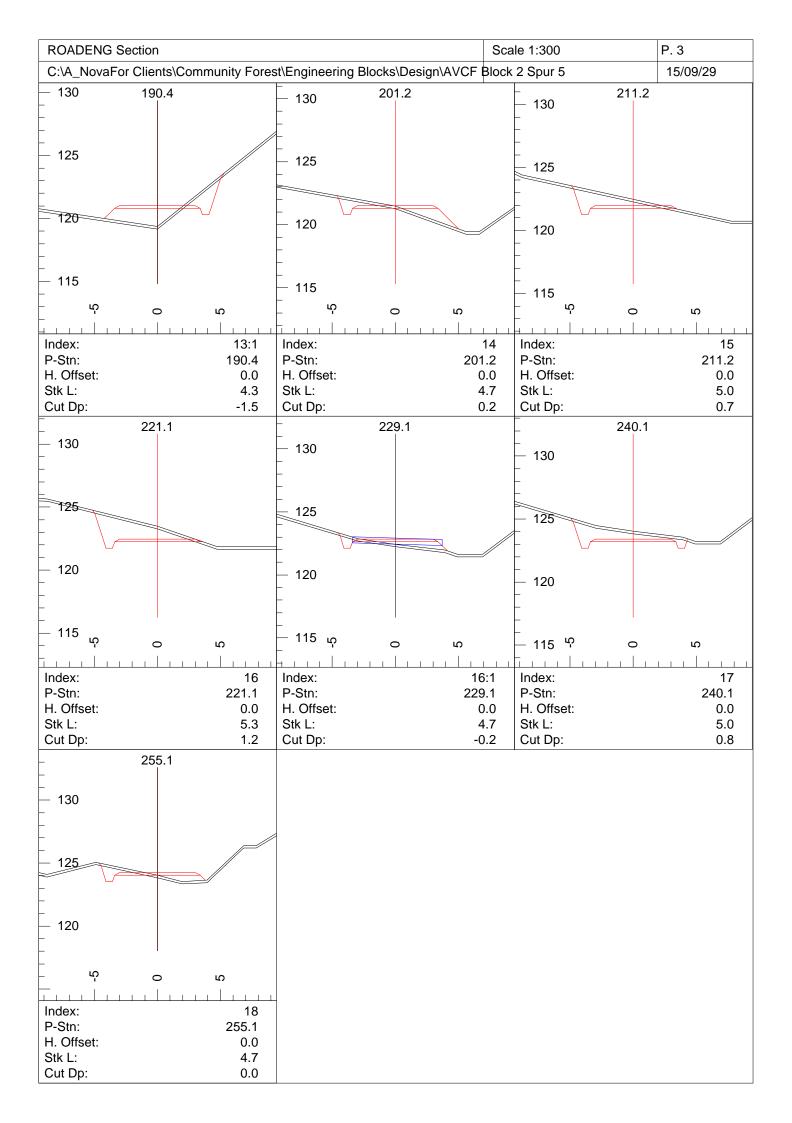





OADENG Plan	Scale 1:3000	P. 1
:\A_NovaFor Clients\Community Forest\Engineering Blocks\Design\AVC	F Block 2 Spur 4A	15/09/29
Sta.2 - 0+016 - Start FBEH D+030 - End FBEH O+041 - End POC off of Spur 4 - 0+239		


ROADENG Pro	ofile				Horz	Scale 1:2000	Р	. 1	
C:\A_NovaFor	Clients\Commun	ity Forest\Engin	eering Blocks\De	sign\AVCF	BIVert	Scale 1:200		15/09/2	29
115									
110	^\\/ C	F - RIC	ck 2 -	Shur	• 🖊	\wedge			
	AVC	1 - DIC	JUN 2 -	Opui	7	lacksquare			
105		\							
		DOG " 10	4 0 000						
		POC off of Spu	ır 4 - 0+239						
		/ \							
100		20/							
Sta.2 - 0+016	- Start FBEH		0+041 - End						
		100							
	0.000 FadED								
95	0+030 - End FBE	H/							
95		\							
90									
0.5									
85									
80									
75			_			_			
-50	0	50	100		150	200		250	L-Stn
Lyr1 Gnd:				ОВ —		- 1			
Lyr2 Gnd: ——				R1					
Lyr3 Gnd: —				n/a ———					
	c								Cut/Fill
	-	2.5 0.3 0.0							




ROADENG Plan	Scale 1:2000	P. 1
C:\A NovaFor Clients\Community Forest\Engineering Blocks\Design\AVCF I	Block 2 Spur 5	15/09/29

Alberni Valley Community Forest K2D

Region: West Coast Natural Resource Region / South Island Natural Resource District SITE PLAN SUPPORT DOCUMENT

A. TENURE IDENTIFICATION

LICENCE NO.:	LICENSEE NAME:		LOCATION:	Opening Number:	Harvested (ha):
K2D	Alberni Valley Community Forest		Taylor River	Block 1	11.1
TOTAL AREA UNDER PRESCRIPTION		CUTTING PERMIT:		MAPSHEET:	□ CROWN □ □ □ □ □ □ □ □ □
(ha): 12.0				092F024	☐ PRIVATE
OPERATING AREA:			AL FIELD WORK and REVIEW	ENGINEERED BY:	
South Island Natural Resource District	(DATE): Ben Durkan RPF Aug & Sept, 2015			NovaFor Forest Services Ltd.	

B. AREA SUMMARY AND ECOLOGICAL INFORMATION

	AREA OF NO PLANNED REFORESTATION (ha) (NPR)									
PERMAI ACCE		ROCK	WATER	SWAMP	OTHER NP	NC>4 ha	RESERVES WITH NO MODIFICATIONS:	IMMATURE	OTHER (WTP)	TOTAL NPR AREA
0.9)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	1.7
			NET ARE	A TO BE R	EFORESTE	D INCLUI	DING RESERVES WITH N	ODIFICATIONS	(ha)	
SU AREA DESCRIPTION								NET AREA TO BE REFORESTED:		
A	BEC: CWHmm2 01 (60%) 05 (40%) 3-4 / C-D - Eco Unit #1 SU A occurs along the mid to lower slope position, the SU is comprised of the dominant 01 site series and large areas of the 05 site series. The forest consists of old growth Douglas-fir, Red Cedar, Hemlock as well as some scattered Cypress and Yew. Soils are Silty Loam texture over till, 50-70cm in depth with +60% coarse fragment content. Majority of area is moderately well drained. Vegetation cover consists of salal, vaccinium, bunchberry, vanilla leaf, foam flower and pipe-cleaner moss. A MOR humus form of 3-5cm overlies the soils. Elevation ranges from 220-660m. There are moderate 40% DMH levels. The aspect is of the block is to the North. The terrain has a post-harvest landslide potential of Very Low to Low. Manage SU A for Douglas-Fir as the leading species with a component of Red Cedar in the wetter / richer sites, especially in low lying areas.								7.3	
BEC: CWHmm2 03(90%) 02(10%) 1-2 / B-C – Eco Unit #2 SU B occurs along the mid to lower slope position, the SU is comprised of the dominant 03 site series with small pockets of the 02 site series. The forest consists of old growth Douglas-fir, Red Cedar, Hemlock as well as some scattered Cypress and Yew. Soils are Silty Loam texture over till, 50-70cm in depth with +60% coarse fragment content. Majority of area is moderately well drained. Vegetation cover consists of salal, vaccinium, bunchberry and some sword fern. A MOR humus form of 3-5cm overlies the soils. Elevation ranges from 220-660m. There are moderate 40% DMH levels. The aspect is of the block is to the North. The terrain has a post-harvest landslide potential of Very Low to Low. Manage SU B for Douglas-Fir as the species							3.0			
							TOTAL NE	T AREA TO BE RE	FORESTED:	10.3
							TOTAL	AREA UNDER PRE	SCRIPTION:	12.0

C. OBJECTIVES

b)

C.1. LONG TERM MANAGEMENT OBJECTIVES

5.1.1a - Old Growth Management Areas - Maintenance or recruitment of old growth forests.

The AVCFC will not carry out road construction or timber harvesting within Old growth management areas delineated as part of the Sproat Lake Landscape Unit Plan established July 18, 2005 except under the following circumstances:

- a) to accommodate operational requirements for timber harvesting and road or bridge construction, boundaries of OGMA's that area 10 ha or greater in size may be adjusted provided that:
 - 1) the boundary adjustment does not affect more than 10% of the area of the OGMA
 - 2) road or bridge construction is required to access resource values beyond or adjacent to the OGMA and no other practicable option exists, and
 - 3) Suitable replacement OGMA is identified.
- b) Timber harvesting to prevent the spread of insect infestations or diseases that pose a significant threat to forested areas outside of OGMAs
- c) Salvage provided that it is done in a manner that retains as many old growth forest attributes as practicable.
- d) Removal of danger trees, or brushing and clearing within the right-of-way on existing roads for safety purposes,
- e) Felling of trees for guy-line clearance, tail-hold anchor trees, or danger trees.
- f) Construction of rock quarries and gravel pits
- g) Intrusions that affect an OGMA by less than 0.5ha in total

The development of block 1 will not infringe on any Old Growth Management Areas.

5.1.1b - Wildlife Tree Retention - Maintain stand-level structural diversity, by retaining wildlife tree patches (WTPs)

Wildlife Tree Retention by BEC Subzone in the Sproat Lake Landscape Unit

- a) WTPs will be distributed across the BEC subzone
 - WTPs are located within or immediately adjacent to a cutblock when designated at the operational site plan level
- c) No timber harvesting, is allowed to occur within a WTP except
 - 1) Salvage of wind-thrown timber within WTP's where wind throw impacts 25-50% of dominant or co-dominant stems
 - 2) Salvage of wind-throw timber and harvesting or remaining stems within WTPs where wind throw exceeds 50% of the dominant or co-dominant stems.
 - 3) Where forest health issues pose a significant threat to areas outside the WTP
- d) Where salvage harvesting is planned, suitable replacement WTP of at least equivalent quality will be identified concurrently to achieve the retention target.
- e) WTPs include, if present, remnant old growth patches and live or dead veteran trees (except danger trees)
- f) WTPs include representative larger trees (DBH > average operational cruise0 for the stand and any moderate to high value wildlife trees if available (except danger trees)
- g) BEC subzones and variants will be determined by operational site plan information
- WTPs with a high likelihood of wind throw may be pruned or topped to maintain the integrity of the WTP.

Block 1 is in CWHmm2 (Coastal Western Hemlock, moist maritime) which the Sproat Lake Landscape Unit Plan has a 7% WTP Requirement.

5.1.1c - Special Management Zone 17 - Sustain forest ecosystem structure and function within the portion of Special Management Zone 17 located in the Sproat Lake Landscape Unit.

Retaining mature and old forests (i.e. >80 years of age) on an area covering at least 25 per cent of the total forested area of the SMZ portion located within the landscape unit. The Alberni Valley Community Forest has >25% of the mature and old forests retained.

5.1.2a - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Creating or maintaining stand structures and forest attributes associated with mature and old forests.

The target for mature seral forest should range from 25% to 33% of the forested area of each SMZ.

The Alberni Valley Community Forest has >25% of the mature seral forests retained.

5.1.2b - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Retaining within cut blocks structural forest attributes and elements with important biodiversity functions

Design cut-blocks in a manner that is consistent with retaining structural forest attributes and elements with important biodiversity functions that exist in: wildlife tree patches, no-work zones, riparian management areas, other potential leave areas Structural forest attributes with important biodiversity functions includes but is not limited to snags, wildlife trees and downed logs.

Block 1 is designed under the retention silviculture system to retained timber surrounding riparian features, treed rock bluffs.

5.1.2c - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Applying a variety of silvicultural systems, patch size and patch shapes across the zone subject to maximum cutblock sizes.

Design cutblocks in a manner that is consistent with:

- 1) Establishing a variety of silvicultural systems and patch sizes and shapes across the SMZ, and
- 2) For shelter-wood, selection, or retention silviculture systems
 - a) Maintaining varying levels of retention within the cutblock based on a consideration of the site-specific site conditions and forest values, and
 - b) Limiting the Net Area to be Reforested (NAR) to 40 hectares
- 3) For clear-cut, clear-cut with reserves or seed tree silvicultural systems, limiting the NAR to 5 hectares.

Carry out forest practices only if the forest practices are consistent with the design for the cutblock.

Block 1 has been designed to meet retention requirements, retention silviculture system requirements and is less than 40 hectares of Net area to be Reforested.

5.2.1d - VILUP HLP Objective 2 - Damaged timber

If, within areas designated as SMZ 17, timber harvesting is to be carried out in a cutblock to recover timber damaged by fire, insects, wind or other similar events, the AVCFC may design the cutblock to have a NAR that exceeds

- a) 40 hectares for shelter-wood, selection, or retention silviculture systems
- b) 5 hectares for clearcut, clearcut with reserves or seed tree silviculture systems

Provided that the design incorporates structural characteristics of natural disturbances into the cutblock where safe and practicable.

Block 1 is designed to incorporate mature timber and does not include significant damaged timber areas.

5.2.1 – FPPR s.5 - Objectives set by government – Soils

Without unduly reducing the supply of timber from British Columbia forests, to conserve the productivity and the hydrologic function of soils.

The AVCFC will comply with soil disturbance limits and permanent access structure limits.

The limit for permanent access structures (built or used by the agreement holder) of 7% of the cutblock will not be exceeded. Helicopter Drop Zones will be rehabilitated and logging debris will be piled and burned.

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 3 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

5.2.2 - FPPR s.7 - Objectives set by government - Wildlife

Without unduly reducing the supply of timber from British Columbia forests, to conserve sufficient wildlife habitat in terms of the amount of area, distribution of areas and attributes of those areas, for the survival of species at risk, the survival of regionally important wildlife, and the winter survival of specified ungulate species.

Identified species at risk include the Marble Murrelet, Queen Charlotte Goshawk and Scoulers Courydalis. The AVCFC will carry out or authorize timber harvesting or road construction in a manner that retains the habitat specified in the Marbled Murrelet notice (December 2004).

Block 1 is a Douglas-Fir Western Hemlock old growth stand and does not intersect any Marbled Murrelet Habitat identified in the 'Indicators of the amount, distribution and attributes of wildlife habitat required for the survival of species at risk in the South Island Forest District for Marbled Murrelet (December 21, 2004)). Marbled Murrelet class 1, 2 & 3 habitat is maintained within the non-contributing landbase / legal old growth management areas.

5.2.3 - FPPR s.8 - Objectives set by government - Water, fish, wildlife and biodiversity within riparian areas.

Without unduly reducing the supply of timber from British Columbia forests, to conserve, at the landscape level, the water quality, fish habitat, wildlife habitat and biodiversity associated with those riparian areas.

All streams within block 1 are classified as S4 due to being less than 1.5m width and are located within in the Sproat Lake Community Watershed and are defaulted to fish. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

5.2.4 - FPPR s.8.2 - Objectives set by government - Community Watersheds

To prevent the cumulative hydrological effects of primary forest activities within the community watershed resulting in a material adverse impact on the quantity of waters or the timing of the flow of waters, or the water having a material adverse impact on human health.

The AVCFC will design cutblocks and roads in a manner that is consistent with a cumulative low to moderate risk threshold for material adverse hydrological effects, in accordance with the resulting CWAP indicator scores. With regards to roads and harvesting:

- 1) Plan to minimize road requirements
- 2) Plan for temporary rather than permanent roads where there is a high likelihood of erosion into streams
- 3) Carry out frequent road inspections and minimize delays in road repairs.
- 4) Minimize soil disturbance during harvesting
- 5) Install adequate culverts to ensure natural water drainage is maintained
- 6) Revegetate right-of-ways, cut slopes, road surfaces, and landing where revegetation will reduce soil erosion into watercourses
- 7) Implement only those silvicultural practices that have negligible impacts on water quality
- 8) Plan partial cut or retention silviculture systems to focus retention in riparian areas
- 9) Adopt Western Forest Product's terrain management code of practice. (no longer in effect)
- 10) Consult and cooperate with local groups promoting water quality.

Block 1 is within the Sproat Lake Community Watershed and all internal streams are less than 1.5m width and are classified as S4 or NCD. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

Road Requirements are minimized and as the roads do not access future harvest areas the roads can all be treated as temporary roads.

5.2.5 – FPPR s.9 - Objectives set by government - Wildlife and Biodiversity – landscape level.

Without unduly reducing the supply of timber from British Columbia forests and to the extent practicable, to design areas on which timber harvesting is to be carried out that resemble, both spatially and temporally, the patterns of natural disturbance that occur within the landscape.

The AVCFC will adopt FPPR Sections 64 (Cutblock size) and 65 (Cutblock adjacency). Cutblocks in Special Management Zone 17 will have a net area to be reforested in accordance with the VILUP HLP Order Objective 1 (c) or HLP Order Objective 2.

All blocks adjacent to block 1 have reached 3m green up and block 1 does not exceed cutblock size restriction.

5.2.6 - FPPR s.9.1 - Objectives set by government - Wildlife and Biodiversity - stand level.

Without unduly reducing the supply of timber from British Columbia forests, to retain wildlife trees.

The AVCFC adopts, Sections 66 (wildlife tree retention) and 67 (restriction on harvesting) of the FPPR. Where wildlife tree retention targets are specified in an approved landscape unit plane, wildlife tree retention will meet or exceed targets specified in approved landscape unit plans. Buffer and protect active or recently used bear dens where they are located during cutblock layouts.

Block 1 is in CWHmm2 in the Sproat Lake Landscape Unit Plan which requires 7% Wildlife Tree Patches associated with the block.

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 4 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

5.2.7 - FPPR s.10 - Objectives set by government - Cultural Heritage Resources

Conserve, or, if necessary, protect cultural heritage resources that are: the focus of a traditional use by an aboriginal people that is of continuing importance to that people, and not regulated under the Heritage Conservations Act.

The AVCFC, when designing a cutblock or road will, prior to harvest or construction, identify

- a) The portion of the area occupied by a special cultural heritage resource.
- b) The nature of the special cultural heritage resource
- c) Whether the special cultural heritage resource is to be protected or conserved
- d) What constraints, if any, are to apply to the forest practices carried out on the area.

For each special cultural heritage resource that has been identified for protection, the AVCFC will carry a forest practice only to the extent that the forest practice does not damage or render ineffective the special cultural heritage resource. The forest practice will be done to be consistent with the constraints, if any, specified in the design for the cultilock or road.

If, within a cutblock or road where the AVCFC is carrying out harvesting or road construction, a previously unidentified special cultural heritage resource is encountered, operations within the cutblock or road area to cease or be modified to the extent necessary to protect the special cultural heritage resource.

The AVCFC recognizes that mature western red cedar and cypress located within the identified FDU are special cultural heritage resources to the Hupacasath and Tseshaht First Nations. These first nations will be provided with a copy of the most recent western red cedar inventory for the applicable area completed by the South Island Forest District as well as any update's to the inventory.

Western red cedar and cypress, where ecologically suited, will be planted on areas referred to in Section 29 (1) of the Heritage Conservation Act in accordance with the stocking standards specified in the FSP.

Where a strategy for monumental western red cedar or cypress has been developed and agreed upon by the AVCFC, the applicable First Nation and the Ministry of Natural Resource Operations, the AVCFC will assist in implementation of the strategy.

The AVCFC recognizes that deciduous species such as bitter cherry, yew and arbutus located within the identified FDU may be special cultural heritage resources to the Hupacasath and Tseshaht First Nations. The AVCFC will ensure that, where one or more of these species is identified to the AVCFC as a special cultural heritage resource by a first nation, and where it is present in an area referred to in section 29 (1) of the Heritage Conservation Act, a component of these species will be maintained within the section 29 (1) area, provided that it can be done in accordance with the stocking standards specified in the FSP.

No "potentially affected cultural heritage resource" has been identified in or adjacent to this cutblock. The block does contain old growth cedar and cypress as well as some western yew.

5.3.1 - Objectives Established under the GAR - Visual Quality Objectives

Ensure that each cutblock or road within the FDU is designed in a manner such that the altered forest landscape for the applicable scenic area will be consistent with the applicable visual quality objective, and carry out forest practices only if the forest practices area consistent with the design for the cutblock or road referred.

The AVCFC will ensure that each cutblock or road within the FDU is designed in a manner such that the altered forest landscape for the applicable scenic area will be consistent with the applicable visual quality objective, and carry out forest practices only if the forest practices are consistent with the design for the cutblock or road.

Block 1 is located within a Partial Retention VQO polygon and is designed to meet the VQO through the use of buffers, retention patches and wildlife tree patches. Block 1 is within VQO polygons 2300 and 2298 as per GAR order Visual Quality Objectives for the South Island Forest District from District Manger December 2005.

7.0 - Measures to Prevent the Introduction and spread of Invasive Plants - Invasive Plants

AVCFC will confirm known locations of priority invasive plants within the plan area using the most current recognized provincial database. The AVCFC will distribute information to staff and contractors on priority invasive plants that exist or threaten to establish within the plan area and direct staff to monitor and report new incidences of priority invasive plants and enter them into most current recognized provincial database.

Persons carrying out timber harvesting and / or road building activities area to inspect logging and road building equipment for invasive shrug vegetation, and remove from equipment prior to transporting equipment from an area of a known occurrence of the invasive plant to a remote location or site where the invasive plant is currently present

C.2. WILDLIFE and BIOLOGICAL DIVERSITY

No evidence of Roosevelt elk, bear dens or raptor nests was identified during the SP field review. There is no Ungulate Winter Ranges (UWR), legal or draft Wildlife Habitat Areas or legal or draft Old Growth Management areas associated with Block 1.

Prescribed site conditions:

Forest canopy removal is expected to cause a temporary increase in the availability of forage species during early seral stages, thereby benefiting local wildlife populations. Adjacent stands with mature coniferous timber provide cover and travel corridors for wildlife.

Block 1 is in CWHmm2 (Coastal Western Hemlock, moist maritime) which the Sproat Lake Landscape Unit Plan has a 7% WTP Requirement.

Wildlife trees may provide habitat for nest cavities, nest platforms, dens, roosts, hunting perches, foraging sites, and display stations during breeding. It may improve the viewscape, become a future source of course woody debris, and provide structural diversity. In addition, this patch contains a component of live and dead wildlife trees and is representative of the forest structure, density, and species composition of the area to be harvested.

Characteristics and Species of the Wildlife Tree Patch:

The wildlife tree patch represents the forest structure, density, and species composition of the proposed cutblock. The WTP is designed to provide the best wildlife habitat and long-term forest cover for a diverse range of species. The existing stand within the area appears to be both wind-firm and of good wildlife value due to its proximity to adjacent leave areas.

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 5 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

ROOSEVELT ELK

Elk Management

Roosevelt elk (Cervus elaphus roosevelti) is a 'blue-listed' species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Preferred habitat

The preferred habitat for Roosevelt elk includes wetlands, riparian areas, rock outcrops, vegetated slides and natural forage areas. Natural forage areas may include open grown stands and stands dominated by deciduous species. Elk are particularly subject to harassment in these areas because of their tendency to congregate in them. Cutblock design was influenced by the elk's requirement for visual screens; this was done by utilizing existing forest cover, topography and the placement of the TLA's.

Forage

Silviculture systems such as clear-cutting, seed tree, and shelter-wood are the most effective means of establishing forage areas. This must be tempered by the need to maintain such values as visual landscape quality, garner public acceptance of BCTS harvesting activities, and meet the objectives of the strategic plan for the BCTS. BCTS will address the need to create elk forage by considering the following aspects during the development of Silviculture Prescriptions:

- Where visual landscape quality and habitat requirements can be met, a Silviculture system targeting greater than 60% Basal Area removal will be selected. Shelter-wood, seed tree and retention systems will be favoured
- Disturbed roadsides within cut-blocks will be re-vegetated using clover and grass mixes in an attempt to enhance forage production.
- Manual brushing will be the primary means of controlling competing vegetation in plantations. Herbicides will only be used where there is demonstrated evidence that
 manual treatments are not effective.
- Heavy slash accumulations will be piled or redistributed to increase travel through the cutblock by elk.

Cover

Elk require cover to meet their requirements for shelter and security. Forest vegetation and topographic features can be used to provide protection from predation or harassment, conserve energy during inclement weather conditions and as winter forage areas when heavy snowfall restricts travel. When formulating Silviculture Prescriptions, the following quidelines will be considered.

- Harvesting, using silviculture systems other than selection systems or commercial thinning, will not be carried out adjacent to an existing cut-over until 75% the
 regenerated stand has the capability of hiding 90% of a standing adult elk at a distance of 61 meters. Where required, MoE Habitat and MoF regional staff may be asked
 to assist in determining if stands have met this criterion.
- Leave areas to be effective for security cover must be greater than 61 meters in width.
- The design for cutblocks should ensure that no point within the cutblock is greater than 200 meters from security cover. When a cutblock is adjacent to a public right-of-way, the area associated with the right-of-way shall be considered in determining security cover requirements. This would apply to hydro, pipeline, and public highway rights-of-way, but not industrial roads unless a specific need has been identified.
- Harvested cutblocks will promptly be regenerated to a minimum of 500 crop trees per hectare. Shade tolerant species will be encouraged as a component of the new stand.

Black Bears

Black bear (*Ursus americanus vancouveri*) is a "yellow-listed" species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Preferred habitat

Black bear dens are most often found in the hollow bases of cedar trees. They may also be found in downed hollow logs and holes under root wads. Bear dens can be identified by the presence of black bear hair, bite and claw marks on the tree log or stump and possibly the marking on adjacent trees. Evidence of vegetation inside the structure (used as bedding) and a lack of scats also indicate denning activity. Very small holes can be used to gain access to a den. Some bears use den holes well up the side of a tree, as they are extremely able climbers. Those dens found well up the side of a tree are safest for the bear and will be given highest consideration for protection. It appears that females den earlier and emerge later than males, pregnant females remaining in their den the longest.

Measures to Protect:

Measures to protect bear dens include ensuring engineering field crews are aware of bear denning requirements. In second growth areas particular attention will be given to old growth stumps, vets, wind-throw and downed logs. Where bear dens are identified during the planning phase of cutblock development, the objective will be to retain the den within a wind-firm wildlife tree patch or other retention area in consultation with MoE Habitat staff.

Protection of Bear Denning Sites

Unless agreement is reached with MoE Habitat Protection staff to the contrary or there is a need to address a public or worker safety issue, the following measures will be taken to protect denning sites.

- •IIThe objective will be to defer trees containing bear dens from harvest and to retain a wind-firm buffer around them. The objective will be to leave a 20 metre radius buffer around the den. In the event that a 20 metre buffer cannot be left or a tree containing a bear den must be felled (i.e. it is located at a critical control point on a road location or a danger tree), MoE Habitat staff will first be consulted;
- Material identified in previously harvested areas contributing to the structure of a bear den will not be disturbed in the course of salvage operations,
- •IIIWhere den trees cannot be protected, the tree will be required to be high stumped and if necessary, a roof constructed over the stump.
- •IIIWhere bear den trees are encountered during falling, prior to the tree being cut, the tree and its surrounding area will be left and MoE Habitat will be consulted so that an appropriate prescription can be formulated. It will be left to the faller's and licensee's judgement on how to deal with a bear den tree that is partially felled. Under no circumstances will a hazardous or unstable tree be allowed to remain standing;
- •IThe objective will be to retain a 30 metre buffer around active bear dens until after the bear is out of the den, usually between November 1st and May 1st or until the bear leaves on its own;
- Locations of dens will be shown on 1:5,000 maps and forwarded to MoE Habitat. In areas where old growth is limited, more scrutiny will be used for areas where bear dens may be prevalent.
- In some areas, the lack of large-diameter trees can limit bear denning opportunities. The following strategy will be implemented within the riparian management zones of joint-approval areas and SMZs under this FDCP:
- 1. Where blowdown trees are harvested within RMZs, the following retention measures shall apply to Douglas fir and cedar stems greater than 75 cm in diameter. Where safe to do so, a portion of the stem shall be retained between the root wad and the first cut, measuring a minimum of five (5) metres in length.
- 2. Where there are dead and down pieces of Douglas fir or cedar within the RMZ, all pieces equal to or greater than one (1) metre in diameter and equal to or greater than five (5) metres in length shall be reserved from harvest. The entire downed log within the RMZ is to be retained where it is five (5) metres or more in length.

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 6 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

Cougar

Cougar (Puma concolour) is a "yellow-listed" species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Home ranges for cougar varies from 1,300 to 5,200 ha's. The cougar has the most extensive range of any terrestrial mammal in the western hemisphere. Cougars utilize the same habitat as black-tailed deer, their primary food source. Cougars take cover in the form of vegetation, and irregular landscape is more important to cougar, than the particular vegetation type. The negative influences of logging on deer habitat and deer populations will affect cougar populations. Cougar dens are found primarily in old growth forests. This cut block is located within a rural / forest transition area and management strategies for cougar vary greatly by land owners.

Black tailed deer

Black tailed deer (*Odocoilus hemionos columbianus*) are not listed with the species or ecosystems at risk on the MoE Conservation Data Centre's tracking list for the South Island Forest District.

There are no grand parented Ungulate Winter Ranges (UWR) or UWR proposed for confirmation in the vicinity of this cutblock. The harvesting of this cutblock will therefore not significantly impact deer with regard to winter range habitat. The harvested block will provide significant spring forage opportunities to the ungulates until the plantation reaches crown closure.

C.3. SENSITIVE AREAS

Prescribed site conditions: This block has been engineered to preserve sensitive sites and exposed rocks and shallow soil/rocky sites. Care must be taken when operating machinery to ensure adverse impacts to the soil do not occur.

C.4. FISHERIES and STREAMS

Prescribed site conditions: All in block streams are non-fish bearing. Care is to be taken when operating in areas adjacent to all stream and NCD's. Operations must adhere to the riparian management strategies outlined in Appendix 1.

Block 1 is within the Sproat Lake Community Watershed and all internal streams are less than 1.5m width and are classified as S4 or NCD. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

C. 5. WATERSHEDS

The proposed cutblock is in the Sproat Lake Community Watershed but not in any Fisheries Sensitive Watersheds.

Prescribed site conditions: Care must be taken during harvesting activities to ensure that surface water is not adversely impacted by the proposed operations.

C.6. RECREATION

The current recreational use is estimated as moderate and consists of hunting, mushroom picking, hiking and wildlife viewing.

Prescribed site conditions: Harvesting activities will not preclude future recreational opportunities, as visual, riparian and wildlife values will be maintained due to the high level of retention.

Block 1 is in classified as 'Roaded Modified' for Recreation Opportunity and Moderate for Recreation Feature Inventory and Significance. The active roads TA560 and TA568 are the roads which will be used to haul Block 1 timber, they are also the access to the trail head of the Mount Adder Trail, during harvesting actions will be required to protect users of this recreational trail.

C.7. VISUAL LANDSCAPE

The proposed cutblocks Block 1 & Block 2 are within a scenic area with a Visual Quality Objective (VQO) of Partial Retention (PR), associated with the Pacific Rim Highway (Highway 4).

The cutblocks were reviewed during the pre-harvest stage and the layout was engineered to ensure that the setting met the VQO requirements.

A Visual Impact Assessment was completed for the Alberni Valley Community Forest by Silvacare Inc. in September 2015. The assessment used 4 separate View points and found the block to meet the Partial Retention VQO.

 $\label{prescribed} \textbf{Prescribed site conditions: The four viewpoints used are from points along the Pacific Rim Highway.}$

C.8. CULTURAL HERITAGE

This cutblock is located within the Hupacasath First Nation asserted traditional territory. No CMTs were identified during the field review or layout of this old growth stand.

Prescribed site conditions: If any cultural heritage objects and/or CMT's are discovered during the CMT field review, an AIA should be conducted and the prescriptions should be reviewed prior to harvest or road construction. Should resources be identified during the active harvesting or road building, all activities must cease and Hupacasath First Nation must be informed of the type and location of suspected archaeological resources. Approval from Hupacasath First Nation is required prior to resuming operations.

C. 9. OTHER RESOURCES

The cutblock Block 1 is in a mineral tenure 1035101 - Snow 6 Pass - 295.03ha - held by Thomas Robert Paterson #248861\

This cutblock is in trap line tenure (#TR0107T407).

This block is in Guide Outfitter Area AR84650000.

D. CRITICAL SITE CONDITIONS

SU	CRITICAL SITE CONDITIONS THAT AFFECT THE TIMING OF OPERATIONS,
	AND HOW THEY AFFECT THE TIMING
SU All	To avoid rutting and understory disturbance, do not operate tracked machinery within 5 m of water channels. Cease road-building and yarding activities during and immediately following periods of heavy rainfall. Restrict the use of ground based operations to dry soils as to avoid adverse affects to the soils. Use sufficient puncheon where necessary.

1120				7		
	•	•	•		•	
SU All	Rainfall shutdown p	procedures will be in co	empliance with the "Rainfall Shutdown C	riteria". Specifically, the calcu	ulated rainfall shutdow	n threshold is 100 mm in
	a 24 hour period.					
SU All	No ground-based r	machinery is permitted	within 5 m of any or NCD without wri	tten permission from a Tsesh	naht First Nation Engi	neer or at an authorized
	NCD.		•			
SU All	Ground based ope	rating procedures sho	uld be conducted as to avoid negative	impacts to the soil. To avoi	d disturbance to sens	itive soils, ground-based

PAGE: 7 of 11 DATE: Sept 28, 2015

LOCATION: Alberni Valley Community Forest

E.1 Riparian Management Strategies - refer to Appendix 1.

harvesting and forwarding should only occur in drier conditions.

Block 1

E.2 Gully Management Strategies (Coast)

E.3 FOREST HEALTH MANAGEMENT STRATEGIES

MANAGEMENT STRATEGIES TO REDUCE FOREST HEALTH RISKS

Biotic

K2D

092F024

No incidences of hemlock dwarf mistletoe infection were identified during the SP fieldwork and no treatment is required.

Abiotic – Wind

Novafor Forest Services Ltd. has completed a Windthrow Report. The block does not require pruning. Moderate sized crowns with a species composition should allow the stand to withstand winds.

E.4 COARSE WOODY DEBRIS MANAGEMENT STRATEGIES

Sound and rotting logs and stumps that provide habitat for plants, animals, and insects and are a source of organic matter for future soil development will be maintained through the retention of trees in the wildlife tree patch and timbered leave areas, and the distribution of logging residue across the cutblock. The current allowable limit for post harvest residue that qualifies as harvestable is 10m³/ha in second growth.

E.5 MANAGEMENT STRATEGIES TO MANAGE AND CONSERVE ARCHAEOLOGICAL SITES

In the event archaeological resources are encountered, suspend all harvest activities in the immediate vicinity and inform the engineer as soon as possible, of the location(s) and type of the archaeological resources and the nature of the disturbance.

F. SOIL CONSERVATION

F.1 SIT	F.1 SITE DISTURBANCE							
		HAZARD RATINGS		SOIL CHARACTERISTICS				
	(if logging method	ds other than cable or	aerial are proposed)	(if temporary access structures are proposed)				
SU	SOIL COMPACTION	SOIL DISPLACEMENT	SOIL SURFACE EROSION	DEPTH TO UNFAVOURABLE SUBSOIL (cm)		TYPE OF UNFAVOURABLE SUBSOIL		
				MIN	MAX			
Α	Moderate	Moderate	Moderate	60	>60	Hardpan / Bedrock		
В	Moderate	Moderate	High	50	>60	Hardpan / Bedrock		

GROUND BASED OPERATING LIMITATIONS: Soil hazard ratings of moderate to high soil compaction, low to moderate soil displacement and low to moderate surface erosion necessitate specific operating procedures with regard to ground based machinery use, to avoid negative impacts to soil.

SLOPE INSTABILITY INDICATORS: N/A

SOIL DISTURBANCE LIMITS							
MAXIMUM ALLOWABLE SOIL DISTURBANCE WITHIN THE NET AREA TO REFOREST (%)	MAXIMUM EXTENT SOIL DISTURBANCE LIMITS MAY BE TEMPORARILY EXCEEDED TO CONSTRUCT TEMPORARY ACCESS STRUCTURES (%)						
25.0%	5.0%						
Maximum allowable soil disturbance within NAR for roadside work area.							
MAYIMUM PROPORTION OF TOTAL AREA LINDER PRECORIETION ALLOWER	FOR REPLANIENT ACCESS 5.40/						

MAXIMUM PROPORTION OF TOTAL AREA UNDER PRESCRIPTION ALLOWED FOR PERMANENT ACCESS: 5.4%

F.2 REHABILITATION TIME FOR TEMPORARY ACCESS STRUCTURES

Maximum Allowable Time To Complete Rehabilitation (Measured From Completion of Harvest): The timing to rehabilitate the road will be concurrent with harvesting operations.

F.3 MANAGEMENT STRATEGIES FOR TEMPORARY ACCESS STRUCTURES

		FOR EXCAVATED AND BLADED TRAILS					
SU	GENERAL LOCATION:	SEDIMENT DELIVERY RISK (in community watershed only)	MAX ALLOWABLE HEIGHT OF CUTBANKS (m)	AVERAGE HEIGHT OF CUTBANKS (m)	EQUIPMENT TO BE USED (IF OTHER THAN EXCAVATOR)		
All	(list spur name & stations to be rehabilitated)	N/A	N/A	N/A	N/A		

K2D 092F024 Block 1 LOCATION: Alberni Valley Commur	nity Forest PAGE: 8 of 11	DATE: Sept 28, 2015
---	---------------------------	---------------------

G. SILVICULTURAL SYSTEMS

G.1 SILVICULTURAL SYSTEMS

Clear cut with Reserves.

WTP TREE SPECIES AND FUNCTION:

The WTP provides wildlife values, and is designated as long-term reserve. The wildlife tree patch will also contribute to the overall retention. For a description of the wildlife tree patch refer to section C.2. Wildlife and Biological Diversity. Where feasible and safe to do so, snags have been included. The function of the leave area is to maintain lifeboats and enriching reestablished stands with structural features that would otherwise be absent, as well as contribute to the forest influence and add to the stand level biodiversity.

DESCRIPTION OF POST HARVEST STAND STRUCTURE and SITE CONDITION

The post harvest stand structure will consist of a forest stand opening buffered and interspersed by timber leave areas. The TLAs and WTP will facilitate the retention of high biodiversity values with high levels of forest influence while maintaining the wildlife properties of the area.

H. STOCKING REQUIREMENTS

Free (Free Growing Stocking Standards												
SU	Area (ha)	Regen Delay (yrs)	Preferre	d Species (P); Height (m)	Acceptable Species (A);	Target WS	Min. WS	Min. WS P	Min. Intertr				
	()	() -/			Height (m)	P&A	P&A	(#/ha)	ee				
					3 ()	#/ha)	(#/ha)	, ,	Dist.				
									(m)				
Α	7.3	6	Hw 1.25, Hi	m1.0, Cw 1.0, Fd 2.25, Yc 1.0	Ba 1.75	900	500	400	2.0				
В	3.0	3	Fd	1.5, Hw 1.0, Cw 0.75	Hm 0.75, Yc 0.75	800	400	400	2.0				
S	S#	Site Series No.	Early FTG Late FTG (yrs)		Max. Coniferous @ FTG (#/ha)	Post Sp Density (r (#/h	max/min)		ht vs. o. (%)				
1028545 01(60) 05(40)			8	11	10,000	1,500	/500	15	50				
, , ,		03(90) 02(10)	8	11	10,000	1,400/400		15	50				

A MITD of 1.5m will be accepted throughout the rest of the NAR to accommodate poor plantability areas (e.g. minor slash accumulations, wet or rocky sections, etc) or to utilize the most suitable planting microsites.

SU A: Plant Fdc (70%) and Cw (30%)

SU B: Plant Fdc (100%)

I. ADMINISTRATION

PRESCRIPTION PREPARED BY (RPF SIGNATURE AND SEAL):	
BENET J. DURKAN BRITISH COLUMBIA RPF Signature and Seal	RPF Name (Printed) Date:September 29, 2015RPF No: _3767 Original Prescription Date (if Amended):

Ir	
PRESCRIPTION REFERENCES:	
LEGEND	
☑ SP ATTACHMENT	
☑ ON FILE	
□ NOT APPLICABLE	
☑ 1:5,000 SP MAP	
☐ First Nation Letter	
☐ SP FIELD DATA CARDS (e.g.: site and soil classification, forest health evaluations, soil hazard assessment, treatment recommendations, slope instability indicators)	
☑ ADDITIONAL SP COMMENTS	
☐ COMMENTS FROM REFERRALS	
ASSESSMENTS REQUIRED PURSUANT TO THE FPC REGS: VISUAL IMPACT ASSESSMENT (Silvacare Inc.) RIPARIAN ASSESSMENT: FISH ASSESSMENT (Novafor) TERRAIN STABILITY ASSESSMENT (Geoforestry) GULLY ASSESSMENT (N/A)	The procedures required by regulation have been followed for any assessment that is required under section 36.1 of the <i>Operational and Site Planning Regulation</i> . This Site Plan is consistent with the results and recommendations of any assessment required under section 36.1 of the <i>Operational and Site Planning Regulation</i> . While the assessments are not part of the prescription, the prescription is consistent with their results and recommendations.
□ ARCHAEOLOGICAL IMPACT ASSESSMENT (N/A) □ PEST INCIDENCE SURVEY (N/A) □ BLOWDOWN HAZARD ASSESSMENT (Novafor) □ CULTURALLY MODIFIED TREE SURVEY (N/A) □ HABITAT DIVERSITY ASSESSMENT (N/A) □ GREEN UP INFORMATION (N/A)	While I did not personally supervise the work (engineering, layout, traversing or assessments, all work has been tendered by the MoF to well qualified contractors. The work appears to fulfill the standards acceptable of a seal by a Registered Professional Forester.

LOCATION: Alberni Valley Community Forest

PAGE: 9 of 11 DATE: Sept 28, 2015

K2D

092F024

Block 1

☑ PERMANENT ACCESS CALCULATION SHEET (Novafor)

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 10 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	----------------	---------------------

APPENDIX 1

E4 DIDA	E.1 RIPARIAN MANAGEMENT STRATEGIES												
E.1 RIPA	RIAN MANAG	EMENI											
Stream, Wetland or Lake	Riparian Class	Gully (Y/N)	,			Movement Residual ZONES (RMZ)						DRE MANA	GEMENT
Debris				Stream	Class	RRZ	RMZ	Wetlands	RRZ	RMZ	Lakes	RRZ	RMZ (m)
size						(m)	(m)		(m)	(m)		(m)	, ,
Fine	Twigs, need	les, leave	es	S1		50	20	W1	10	40	L1	10	0
V. Small	< 3' x 6"			S2		30	20	W2	10	20	L2	10	20
Small	< 12' x 6"			S3		20	20	W3	0	30	L3	0	30
Large	>12' x 6"			S4		0	30	W4	0	30	L4	0	30
				S5		0	30	W5	10	40			
				S6	i	0	20						
Definition s	NAR			Be Refore									
	NCD			d drainag									
	NCW FA/BL			d wetland		lad away	l conore on	d danger tree	n that agns	ot ha aafalu	follod owou	shall be fo	llad and laft
	FAVBL			imber is i stream.	o be lei	ieu away.	Leaners and	d danger trees	s that cann	ot be salely	r lelled away	snall be le	ned and left
	FA			imber is to	ha fall	ed away							
h	YA		,			,	av In order	to improve d	leflection c	ahles are a	llowed to be	susnende	d above the
	.,,							and danger					
								ns : leaners ar					
		will be	left ur	less detri	mental	to the strea	m.		•				
	HH					of saplings							
	RS				5m of t	he stream	channel (noi	n-merchantab	le).				
	FE		ered E			_							
	BPT							noice of altern					
	NHZ							ne zone. Safe for future LW					as part of
	FX			nger nees	illust	be relied at	id will be left	i ioi iutule Evv	D of Terriov	ea ii aetiiii	ieritai to trie .	stream.	
	YX			Stream h	ank nro	ntection me	asure: Mavi	mize deflectio	n to minimi	ze stream h	ank disturha	nce	
	YV		/ertical		ount pro	ACCION INC	asarc. Maxii	mze deneodo		LC Strouin b	ariik distarba		
	CCL				debris c	oncurrent v	vith logging.						
	MFZ			e Zone.			- 33 . 3.						
	MC	Machi	ne Cle	an transp	ortable i	introduced	large woody	debris (LWD)) and accur	nulations co	oncurrent wit	h yarding.	
	HC	Hand	Clean	introduce	d transp	ortable deb	oris.						
	AHC					st-harvest,	based on st	ream transpo	rt capability	. Stream cle	eaning will b	e done if ne	ecessary.
	NC	No str	eam cl	eaning re	quired.								

Where prescribed, streams will be cleaned when a safe working distance has been established. Fine material will not be removed as part of any debris management strategy unless otherwise specified.

Do not remove **stable natural material** that is in a stream or that is embedded in a stream bank, or a root system that contributes to stream bank stability and fish habitat during harvesting or stream cleaning (except when constructing or modifying an authorized stream crossing).

Temporary stream crossing areas may be designated and must be identified on the SP Map. Within this designated area, no more than three crossings of the stream may be made at any one location.

Reserve zone and management zone widths are provided as slope distances.

Note: The stream (riparian) prescriptions pertain to the portion of the stream within the harvest area. Where the stream lies outside the harvest area and a portion of the RMA is within the harvest area the prescription will be HH, FA, YA, by necessity. **The basal area retention values provided (0) pertain to the portion of the RMZ that is within the harvest area. In these areas, all merchantable stems will be harvested leaving a residual basal area of 0m²/ha. Where the RMZ falls within retention areas (e.g. TLA, WTP), or is completely outside the harvest area, no harvesting will occur; therefore, 100% of the pre-harvest basal area will be retained. Where partial cutting (e.g. feathering) is prescribed within the RMZ the actual range of residual basal area for that section will be provided. When this document is signed, the signing forester is certifying that the RMP is consistent with the approved FDP and the riparian management strategies contained within.

E.2 GULLY MANAGEMENT STRATEGIES (C

	E.Z GOL	E.2 GOLLI MANAGEMENT STRATEGIES (COAST)												
ſ	Stream/	Downstream	Upstream Debris	Water	Debris Flow	Management Strategy Options								
	Gully	Impact	Flow Potential	Transport	Initiation									
	No.	Potential		Potential	Potential									

STREAM 1 IS A GULLY LOCATED OUTSIDE OF THE HARVEST AREA OF BLOCK 1.

RIPARIAN MANAGEMENT ADMINISTRATION

RIPARIAN MANAGEMENT STRATEGIES PREPARED BY:

RIPARIAN MANAGMENT STRATEGIES REVIEWED BY:

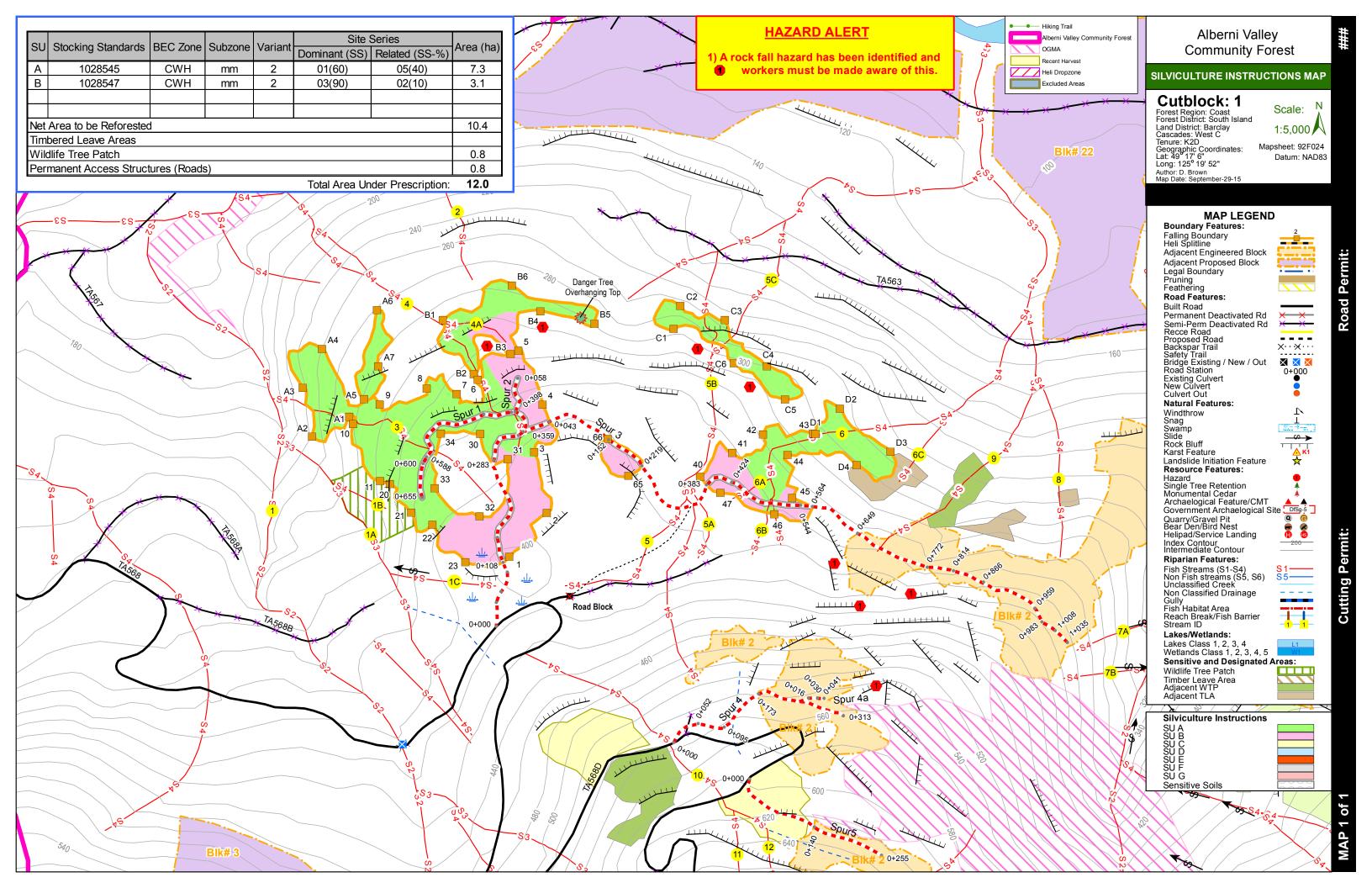
Len Duka

Novafor Forest Services

K2D	092F024	Block 1	LOCATION: Alberni Valley Community Forest	PAGE: 11 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	----------------	---------------------

Alberni Valley Community Forest K2D

Region: West Coast Natural Resource Region / South Island Natural Resource District STREAM DATA FOR CUTBLOCK 164211


	Streams Data Sheet											
Water Course #	Riparian Class	Gully (Y/N)	Ave. Gradient (%)	Ave. Width (m)	Streambed Material	L.W.D. Dependency (L/M/H)	Debris Transport Potential (L/M/H)	Stream Sidewall Gradient (%)	Bank Full height (m)			
1	S2	Υ	40%	10.0	RBCG	M	M-H	50%	1.5			
1A	S3	N	50%	4.5	CG	L	М	30%	0.8			
1B	S4	N	40%	0.3	CG	L	L	30%	0.05			
1C	S4	N	35%	0.3	CG	L	L-M	30%	0.05			
2	S4	N	50%	0.3	CGO	L	L-M	25%	0.05			
3	S4	N	50%	0.5	CGO	L	L-M	25%	0.05			
4	S4	N	50%	0.5	CGO	L	L-M	25%	0.05			
4A	S4	N	40%	0.3	CGO	L	L	20%	0.05			
5	S4	N	15%	1.0	CGO	L	L	20%	0.1			
5A	S4	N	35%	0.5	CGO	L	L-M	20%	0.05			
5B	S4	N	50%	1.4	RBCG	L	M	30%	0.15			
5C	S4	N	45%	1.5	CG	L	M	30%	0.15			
6	S4	N	45%	1.4	RBCG	L	M	30%	0.15			
6A	S4	N	50%	0.8	CGO	L	L-M	25%	0.1			
6B	S4	N	35%	0.4	CGO	L	L-M	25%	0.05			
6C	S4	N	50%	0.5	CGO	L	L-M	30%	0.05			

^{*}LWD Dependency is a function of the number of working pieces per 20m of stream length. Low: <=1, Moderate: 2-4, High:> =5.

Streambed material: O=organics (decomposed plant and woody material); F=fines (<2.0mm); G=gravel (2.0mm to 65.0mm); C=cobble (65mm to 25cm); B=boulder (>25cm); R=Bedrock

Stream sidewall gradient: The representative change in elevation from the top of the stream bank to a topographic break perpendicular to a stream. Bank: The rising ground bordering a stream channel. Banks are called right or left as viewed facing in the direction of the flow.

Bankfull height: The height at which a stream first overflows its natural banks ("Scour depth" on Stream Assessment Cards)

Alberni Valley Community Forest K2D

Region: West Coast Natural Resource Region / South Island Natural Resource District SITE PLAN SUPPORT DOCUMENT

A. TENURE IDENTIFICATION

LICENCE NO.: K2D	LICENSEE NAME: Alberni Valley Community Forest		LOCATION: Taylor River	Opening Number: Block 2	Harvested (ha): 11.6
TOTAL AREA UNDER PRESCRIPTION (ha): 12.5			NG PERMIT:	MAPSHEET: 092F024	☐ CROWN☐ PRIVATE
OPERATING AREA:	ORIGINAL ECO	DLOGICA	L FIELD WORK and REVIEW	ENGINEERED BY:	
South Island Natural Resource District	NovaFor Fores	Services	s Ltd.	NovaFor Forest Services Ltd.	

B. AREA SUMMARY AND ECOLOGICAL INFORMATION

	AREA OF NO PLANNED REFORESTATION (ha) (NPR)									
PERMA ACCE	—	ROCK	WATER	SWAMP	OTHER NP	NC>4 ha	RESERVES WITH NO MODIFICATIONS:	IMMATURE	OTHER (WTP)	TOTAL NPR AREA
0.7	0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0									1.6
NET AREA TO BE REFORESTED INCLUDING RESERVES WITH MODIFICATIONS (ha)										
SU					SU AF	REA DESC	CRIPTION			NET AREA TO BE REFORESTED:
A	BEC: CWHmm2 01 (60%) 05 (40%) 3-4 / C-D - Eco Unit #1 SU A occurs along the mid to lower slope position, the SU is comprised of the dominant 01 site series and large areas of the 05 site series. The forest consists of old growth Douglas-fir, Red Cedar, Hemlock as well as some scattered Cypress and Yew. Soils are Silty Loam texture over till, 50-70cm in depth with +60% coarse fragment content. Majority of area is moderately well drained. Vegetation cover consists of salal, vaccinium, bunchberry, vanilla leaf, foamflower and pipe-cleaner moss. A MOR humus form of 3-5cm overlies the soils. Elevation ranges from 220-660m. There are moderate 40% DMH levels. The aspect is of the block is to the North. The terrain has a post-harvest landslide potential of Very Low to Low. Manage SU A for Douglas-Fir as the leading species with a component of Red Cedar in the wetter / richer sites, especially in low lying areas.									
B BEC: CWHmm2 03(90%) 02(10%) 1-2 / B-C – Eco Unit #2 SU B occurs along the mid to lower slope position, the SU is comprised of the dominant 03 site series with small pockets of the 02 site series. The forest consists of old growth Douglas-fir, Red Cedar, Hemlock as well as some scattered Cypress and Yew. Soils are Silty Loam texture over till, 50-70cm in depth with +60% coarse fragment content. Majority of area is moderately well drained. Vegetation cover consists of salal, vaccinium, bunchberry and some sword fern. A MOR humus form of 3-5cm overlies the soils. Elevation ranges from 220-660m. There are moderate 40% DMH levels. The aspect is of the block is to the North. The terrain has a post-harvest landslide potential of Very Low to Low. Manage SU B for Douglas-Fir as the species							1.2			
	,						TOTAL NE	ET AREA TO BE RE	FORESTED:	10.9
							TOTAL	AREA UNDER PRE	SCRIPTION:	12.5

C. OBJECTIVES

C.1. LONG TERM MANAGEMENT OBJECTIVES

5.1.1a - Old Growth Management Areas - Maintenance or recruitment of old growth forests.

The AVCFC will not carry out road construction or timber harvesting within Old growth management areas delineated as part of the Sproat Lake Landscape Unit Plan established July 18, 2005 except under the following circumstances:

- a) to accommodate operational requirements for timber harvesting and road or bridge construction, boundaries of OGMA's that area 10 ha or greater in size may be adjusted provided that:
 - 1) the boundary adjustment does not affect more than 10% of the area of the OGMA
 - 2) road or bridge construction is required to access resource values beyond or adjacent to the OGMA and no other practicable option exists, and
 - 3) Suitable replacement OGMA is identified.
- b) Timber harvesting to prevent the spread of insect infestations or diseases that pose a significant threat to forested areas outside of OGMAs
- c) Salvage provided that it is done in a manner that retains as many old growth forest attributes as practicable.
- d) Removal of danger trees, or brushing and clearing within the right-of-way on existing roads for safety purposes,
- e) Felling of trees for guy-line clearance, tail-hold anchor trees, or danger trees.
- f) Construction of rock quarries and gravel pits
- g) Intrusions that affect an OGMA by less than 0.5ha in total

The development of block 2 will not infringe on any Old Growth Management Areas.

5.1.1b - Wildlife Tree Retention - Maintain stand-level structural diversity, by retaining wildlife tree patches (WTPs)

Wildlife Tree Retention by BEC Subzone in the Sproat Lake Landscape Unit

- a) WTPs will be distributed across the BEC subzone
- b) WTPs are located within or immediately adjacent to a cutblock when designated at the operational site plan level
- c) No timber harvesting, is allowed to occur within a WTP except
 - 1) Salvage of wind-thrown timber within WTP's where wind throw impacts 25-50% of dominant or co-dominant stems
 - 2) Salvage of wind-throw timber and harvesting or remaining stems within WTPs where wind throw exceeds 50% of the dominant or co-dominant stems.
 - 3) Where forest health issues pose a significant threat to areas outside the WTP
- d) Where salvage harvesting is planned, suitable replacement WTP of at least equivalent quality will be identified concurrently to achieve the retention target.
- e) WTPs include, if present, remnant old growth patches and live or dead veteran trees (except danger trees)
- f) WTPs include representative larger trees (DBH > average operational cruise0 for the stand and any moderate to high value wildlife trees if available (except danger trees)
- g) BEC subzones and variants will be determined by operational site plan information
- h) WTPs with a high likelihood of wind throw may be pruned or topped to maintain the integrity of the WTP.

Block 2 is in CWHmm2 (Coastal Western Hemlock, moist maritime) which the Sproat Lake Landscape Unit Plan has a 7% WTP Requirement.

5.1.1c - Special Management Zone 17 - Sustain forest ecosystem structure and function within the portion of Special Management Zone 17 located in the Sproat Lake Landscape Unit.

Retaining mature and old forests (i.e. >80 years of age) on an area covering at least 25 per cent of the total forested area of the SMZ portion located within the landscape unit.

The Alberni Valley Community Forest has >25% of the mature and old forests retained. Portions of Block 2 are located adjacent to Old Growth Management Area (OGMA)

NAN_splk_54.

5.1.2a - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Creating or maintaining stand structures and forest attributes associated with mature and old forests.

The target for mature seral forest should range from 25% to 33% of the forested area of each SMZ.

The Alberni Valley Community Forest has >25% of the mature seral forests retained. Portions of Block 2 are located adjacent to Old Growth Management Area (OGMA) NAN_splk_54.

5.1.2b - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Retaining within cut blocks structural forest attributes and elements with important biodiversity functions

Design cut-blocks in a manner that is consistent with retaining structural forest attributes and elements with important biodiversity functions that exist in: wildlife tree patches, no-work zones, riparian management areas, other potential leave areas Structural forest attributes with important biodiversity functions includes but is not limited to snags, wildlife trees and downed logs.

Block 2 is designed under the retention silviculture system to retained timber surrounding riparian features, treed rock bluffs.

5.1.2c - VILUP HLP Objective 1 – Sustain forest ecosystem structure and function in SMZ 17 - Applying a variety of silvicultural systems, patch size and patch shapes across the zone subject to maximum cutblock sizes.

Design cutblocks in a manner that is consistent with:

- 1) Establishing a variety of silvicultural systems and patch sizes and shapes across the SMZ, and
- 2) For shelter-wood, selection, or retention silviculture systems
 - a) Maintaining varying levels of retention within the cutblock based on a consideration of the site-specific site conditions and forest values, and
 - b) Limiting the Net Area to be Reforested (NAR) to 40 hectares
- 3) For clear-cut, clear-cut with reserves or seed tree silvicultural systems, limiting the NAR to 5 hectares.

Carry out forest practices only if the forest practices are consistent with the design for the cutblock.

Block 2 has been designed to meet retention requirements, retention silviculture system requirements and is less than 40 hectares of Net area to be Reforested.

5.2.1d - VILUP HLP Objective 2 - Damaged timber

If, within areas designated as SMZ 17, timber harvesting is to be carried out in a cutblock to recover timber damaged by fire, insects, wind or other similar events, the AVCFC may design the cutblock to have a NAR that exceeds

- a) 40 hectares for shelter-wood, selection, or retention silviculture systems
- 5 hectares for clearcut, clearcut with reserves or seed tree silviculture systems

Provided that the design incorporates structural characteristics of natural disturbances into the cutblock where safe and practicable.

Block 2 is designed to incorporate mature timber and does not include significant damaged timber areas.

5.2.1 - FPPR s.5 - Objectives set by government - Soils

Without unduly reducing the supply of timber from British Columbia forests, to conserve the productivity and the hydrologic function of soils.

The AVCFC will comply with soil disturbance limits and permanent access structure limits.

The limit for permanent access structures (built or used by the agreement holder) of 7% of the cutblock will not be exceeded. Helicopter Drop Zones will be rehabilitated and logging debris will be piled and burned.

5.2.2 - FPPR s.7 - Objectives set by government - Wildlife

Without unduly reducing the supply of timber from British Columbia forests, to conserve sufficient wildlife habitat in terms of the amount of area, distribution of areas and attributes of those areas, for the survival of species at risk, the survival of regionally important wildlife, and the winter survival of specified ungulate species.

Identified species at risk include the Marble Murrelet, Queen Charlotte Goshawk and Scoulers Courydalis. The AVCFC will carry out or authorize timber harvesting or road construction in a manner that retains the habitat specified in the Marbled Murrelet notice (December 2004).

Block 2 is a Douglas-Fir Western Hemlock old growth stand and does not intersect any Marbled Murrelet Habitat identified in the 'Indicators of the amount, distribution and attributes of wildlife habitat required for the survival of species at risk in the South Island Forest District for Marbled Murrelet (December 21, 2004)). Marbled Murrelet class 1, 2 & 3 habitat is maintained within the non-contributing landbase / legal old growth management areas.

5.2.3 - FPPR s.8 - Objectives set by government - Water, fish, wildlife and biodiversity within riparian areas.

Without unduly reducing the supply of timber from British Columbia forests, to conserve, at the landscape level, the water quality, fish habitat, wildlife habitat and biodiversity associated with those riparian areas.

All streams within block 2 are classified as S4 due to being less than 1.5m width and are located within in the Sproat Lake Community Watershed and are defaulted to fish. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

5.2.4 - FPPR s.8.2 - Objectives set by government - Community Watersheds

To prevent the cumulative hydrological effects of primary forest activities within the community watershed resulting in a material adverse impact on the quantity of waters or the timing of the flow of waters, or the water having a material adverse impact on human health.

The AVCFC will design cutblocks and roads in a manner that is consistent with a cumulative low to moderate risk threshold for material adverse hydrological effects, in accordance with the resulting CWAP indicator scores. With regards to roads and harvesting:

- 1) Plan to minimize road requirements
- 2) Plan for temporary rather than permanent roads where there is a high likelihood of erosion into streams
- 3) Carry out frequent road inspections and minimize delays in road repairs.
- 4) Minimize soil disturbance during harvesting
- 5) Install adequate culverts to ensure natural water drainage is maintained
- 6) Revegetate right-of-ways, cut slopes, road surfaces, and landing where revegetation will reduce soil erosion into watercourses
- 7) Implement only those silvicultural practices that have negligible impacts on water quality
- 8) Plan partial cut or retention silviculture systems to focus retention in riparian areas
- 9) Adopt Western Forest Product's terrain management code of practice. (no longer in effect)
- 10) Consult and cooperate with local groups promoting water quality.

Block 2 is within the Sproat Lake Community Watershed and all internal streams are less than 1.5m width and are classified as S4 or NCD. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

Road Requirements are minimized and as the roads do not access future harvest areas the roads can all be treated as temporary roads.

5.2.5 – FPPR s.9 - Objectives set by government - Wildlife and Biodiversity – landscape level.

Without unduly reducing the supply of timber from British Columbia forests and to the extent practicable, to design areas on which timber harvesting is to be carried out that resemble, both spatially and temporally, the patterns of natural disturbance that occur within the landscape.

The AVCFC will adopt FPPR Sections 64 (Cutblock size) and 65 (Cutblock adjacency). Cutblocks in Special Management Zone 17 will have a net area to be reforested in accordance with the VILUP HLP Order Objective 1 (c) or HLP Order Objective 2.

All blocks adjacent to block 2 have reached 3m green up and block 1 does not exceed cutblock size restriction.

5.2.6 - FPPR s.9.1 - Objectives set by government - Wildlife and Biodiversity - stand level.

Without unduly reducing the supply of timber from British Columbia forests, to retain wildlife trees.

The AVCFC adopts, Sections 66 (wildlife tree retention) and 67 (restriction on harvesting) of the FPPR. Where wildlife tree retention targets are specified in an approved landscape unit plane, wildlife tree retention will meet or exceed targets specified in approved landscape unit plans. Buffer and protect active or recently used bear dens where they are located during cutblock layouts.

Block 2 is in CWHmm2 in the Sproat Lake Landscape Unit Plan which requires 7% Wildlife Tree Patches associated with the block.

K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 4 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

5.2.7 - FPPR s.10 - Objectives set by government - Cultural Heritage Resources

Conserve, or, if necessary, protect cultural heritage resources that are: the focus of a traditional use by an aboriginal people that is of continuing importance to that people, and not regulated under the Heritage Conservations Act.

The AVCFC, when designing a cutblock or road will, prior to harvest or construction, identify

- a) The portion of the area occupied by a special cultural heritage resource.
- b) The nature of the special cultural heritage resource
- c) Whether the special cultural heritage resource is to be protected or conserved
- d) What constraints, if any, are to apply to the forest practices carried out on the area.

For each special cultural heritage resource that has been identified for protection, the AVCFC will carry a forest practice only to the extent that the forest practice does not damage or render ineffective the special cultural heritage resource. The forest practice will be done to be consistent with the constraints, if any, specified in the design for the cultilock or road.

If, within a cutblock or road where the AVCFC is carrying out harvesting or road construction, a previously unidentified special cultural heritage resource is encountered, operations within the cutblock or road area to cease or be modified to the extent necessary to protect the special cultural heritage resource.

The AVCFC recognizes that mature western red cedar and cypress located within the identified FDU are special cultural heritage resources to the Hupacasath and Tseshaht First Nations. These first nations will be provided with a copy of the most recent western red cedar inventory for the applicable area completed by the South Island Forest District as well as any update's to the inventory.

Western red cedar and cypress, where ecologically suited, will be planted on areas referred to in Section 29 (1) of the Heritage Conservation Act in accordance with the stocking standards specified in the FSP.

Where a strategy for monumental western red cedar or cypress has been developed and agreed upon by the AVCFC, the applicable First Nation and the Ministry of Natural Resource Operations, the AVCFC will assist in implementation of the strategy.

The AVCFC recognizes that deciduous species such as bitter cherry, yew and arbutus located within the identified FDU may be special cultural heritage resources to the Hupacasath and Tseshaht First Nations. The AVCFC will ensure that, where one or more of these species is identified to the AVCFC as a special cultural heritage resource by a first nation, and where it is present in an area referred to in section 29 (1) of the Heritage Conservation Act, a component of these species will be maintained within the section 29 (1) area, provided that it can be done in accordance with the stocking standards specified in the FSP.

No "potentially affected cultural heritage resource" has been identified in or adjacent to this cutblock. The block does contain old growth cedar and cypress as well as some western yew.

5.3.1 - Objectives Established under the GAR - Visual Quality Objectives

Ensure that each cutblock or road within the FDU is designed in a manner such that the altered forest landscape for the applicable scenic area will be consistent with the applicable visual quality objective, and carry out forest practices only if the forest practices area consistent with the design for the cutblock or road referred.

The AVCFC will ensure that each cutblock or road within the FDU is designed in a manner such that the altered forest landscape for the applicable scenic area will be consistent with the applicable visual quality objective, and carry out forest practices only if the forest practices are consistent with the design for the cutblock or road.

Block 2 is located within a Partial Retention VQO polygon and is designed to meet the VQO through the use of buffers, retention patches and wildlife tree patches. Block 2 is within VQO polygon 2298 as per GAR order Visual Quality Objectives for the South Island Forest District from District Manger December 2005.

7.0 - Measures to Prevent the Introduction and spread of Invasive Plants - Invasive Plants

AVCFC will confirm known locations of priority invasive plants within the plan area using the most current recognized provincial database. The AVCFC will distribute information to staff and contractors on priority invasive plants that exist or threaten to establish within the plan area and direct staff to monitor and report new incidences of priority invasive plants and enter them into most current recognized provincial database.

Persons carrying out timber harvesting and / or road building activities area to inspect logging and road building equipment for invasive shrug vegetation, and remove from equipment prior to transporting equipment from an area of a known occurrence of the invasive plant to a remote location or site where the invasive plant is currently present

C.2. WILDLIFE and BIOLOGICAL DIVERSITY

No evidence of Roosevelt elk, bear dens or raptor nests was identified during the SP field review. There is no Ungulate Winter Ranges (UWR), legal or draft Wildlife Habitat Areas or legal or draft Old Growth Management areas associated with Block 1.

Prescribed site conditions:

Forest canopy removal is expected to cause a temporary increase in the availability of forage species during early seral stages, thereby benefiting local wildlife populations. Adjacent stands with mature coniferous timber provide cover and travel corridors for wildlife.

Block 2 is in CWHmm2 (Coastal Western Hemlock, moist maritime) which the Sproat Lake Landscape Unit Plan has a 7% WTP Requirement.

Wildlife trees may provide habitat for nest cavities, nest platforms, dens, roosts, hunting perches, foraging sites, and display stations during breeding. It may improve the viewscape, become a future source of course woody debris, and provide structural diversity. In addition, this patch contains a component of live and dead wildlife trees and is representative of the forest structure, density, and species composition of the area to be harvested.

Characteristics and Species of the Wildlife Tree Patch:

The wildlife tree patch represents the forest structure, density, and species composition of the proposed cutblock. The WTP is designed to provide the best wildlife habitat and long-term forest cover for a diverse range of species. The existing stand within the area appears to be both windfirm and of good wildlife value due to its proximity to adjacent leave areas.

K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 5 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

ROOSEVELT ELK

Elk Management

Roosevelt elk (Cervus elaphus roosevelti) is a 'blue-listed' species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Preferred habitat

The preferred habitat for Roosevelt elk includes wetlands, riparian areas, rock outcrops, vegetated slides and natural forage areas. Natural forage areas may include open grown stands and stands dominated by deciduous species. Elk are particularly subject to harassment in these areas because of their tendency to congregate in them. Cutblock design was influenced by the elk's requirement for visual screens; this was done by utilizing existing forest cover, topography and the placement of the TLA's.

Forage

Silviculture systems such as clear-cutting, seed tree, and shelterwood are the most effective means of establishing forage areas. This must be tempered by the need to maintain such values as visual landscape quality, garner public acceptance of BCTS harvesting activities, and meet the objectives of the strategic plan for the BCTS. BCTS will address the need to create elk forage by considering the following aspects during the development of Silviculture Prescriptions:

- Where visual landscape quality and habitat requirements can be met, a Silviculture system targeting greater than 60% Basal Area removal will be selected.
 Shelterwood, seed tree and retention systems will be favoured
- Disturbed roadsides within cut-blocks will be re-vegetated using clover and grass mixes in an attempt to enhance forage production.
- Manual brushing will be the primary means of controlling competing vegetation in plantations. Herbicides will only be used where there is demonstrated evidence that
 manual treatments are not effective.
- Heavy slash accumulations will be piled or redistributed to increase travel through the cutblock by elk.

Cover

Elk require cover to meet their requirements for shelter and security. Forest vegetation and topographic features can be used to provide protection from predation or harassment, conserve energy during inclement weather conditions and as winter forage areas when heavy snowfall restricts travel. When formulating Silviculture Prescriptions, the following quidelines will be considered.

- Harvesting, using silviculture systems other than selection systems or commercial thinning, will not be carried out adjacent to an existing cut-over until 75% the
 regenerated stand has the capability of hiding 90% of a standing adult elk at a distance of 61 meters. Where required, MoE Habitat and MoF regional staff may be asked
 to assist in determining if stands have met this criterion.
- Leave areas to be effective for security cover must be greater than 61 meters in width.
- The design for cutblocks should ensure that no point within the cutblock is greater than 200 meters from security cover. When a cutblock is adjacent to a public right-of-way, the area associated with the right-of-way shall be considered in determining security cover requirements. This would apply to hydro, pipeline, and public highway rights-of-way, but not industrial roads unless a specific need has been identified.
- Harvested cutblocks will promptly be regenerated to a minimum of 500 crop trees per hectare. Shade tolerant species will be encouraged as a component of the new stand.

Black Bears

Black bear (*Ursus americanus vancouveri*) is a "yellow-listed" species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Preferred habitat

Black bear dens are most often found in the hollow bases of cedar trees. They may also be found in downed hollow logs and holes under root wads. Bear dens can be identified by the presence of black bear hair, bite and claw marks on the tree log or stump and possibly the marking on adjacent trees. Evidence of vegetation inside the structure (used as bedding) and a lack of scats also indicate denning activity. Very small holes can be used to gain access to a den. Some bears use den holes well up the side of a tree, as they are extremely able climbers. Those dens found well up the side of a tree are safest for the bear and will be given highest consideration for protection. It appears that females den earlier and emerge later than males, pregnant females remaining in their den the longest.

Measures to Protect:

Measures to protect bear dens include ensuring engineering field crews are aware of bear denning requirements. In second growth areas particular attention will be given to old growth stumps, vets, windthrow and downed logs. Where bear dens are identified during the planning phase of cutblock development, the objective will be to retain the den within a windfirm wildlife tree patch or other retention area in consultation with MoE Habitat staff.

Protection of Bear Denning Sites

Unless agreement is reached with MoE Habitat Protection staff to the contrary or there is a need to address a public or worker safety issue, the following measures will be taken to protect denning sites.

- •IIThe objective will be to defer trees containing bear dens from harvest and to retain a windfirm buffer around them. The objective will be to leave a 20 metre radius buffer around the den. In the event that a 20 metre buffer cannot be left or a tree containing a bear den must be felled (i.e. it is located at a critical control point on a road location or a danger tree), MoE Habitat staff will first be consulted;
- Material identified in previously harvested areas contributing to the structure of a bear den will not be disturbed in the course of salvage operations,
- · Where den trees cannot be protected, the tree will be required to be high stumped and if necessary, a roof constructed over the stump.
- •IIIWhere bear den trees are encountered during falling, prior to the tree being cut, the tree and its surrounding area will be left and MoE Habitat will be consulted so that an appropriate prescription can be formulated. It will be left to the faller's and licensee's judgement on how to deal with a bear den tree that is partially felled. Under no circumstances will a hazardous or unstable tree be allowed to remain standing;
- •IThe objective will be to retain a 30 metre buffer around active bear dens until after the bear is out of the den, usually between November 1st and May 1st or until the bear leaves on its own;
- Locations of dens will be shown on 1:5,000 maps and forwarded to MoE Habitat. In areas where old growth is limited, more scrutiny will be used for areas where bear dens may be prevalent.
- In some areas, the lack of large-diameter trees can limit bear denning opportunities. The following strategy will be implemented within the riparian management zones of joint-approval areas and SMZs under this FDCP:
- 1. Where blowdown trees are harvested within RMZs, the following retention measures shall apply to Douglas fir and cedar stems greater than 75 cm in diameter. Where safe to do so, a portion of the stem shall be retained between the root wad and the first cut, measuring a minimum of five (5) metres in length.
- 2. Where there are dead and down pieces of Douglas fir or cedar within the RMZ, all pieces equal to or greater than one (1) metre in diameter and equal to or greater than five (5) metres in length shall be reserved from harvest. The entire downed log within the RMZ is to be retained where it is five (5) metres or more in length.

K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 6 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

Cougar

Cougar (Puma concolour) is a "yellow-listed" species according to the MoE Conservation Data Centre's tracking list for the South Island Forest District.

Home ranges for cougar varies from 1,300 to 5,200 ha's. The cougar has the most extensive range of any terrestrial mammal in the western hemisphere. Cougars utilize the same habitat as black-tailed deer, their primary food source. Cougars take cover in the form of vegetation, and irregular landscape is more important to cougar, than the particular vegetation type. The negative influences of logging on deer habitat and deer populations will affect cougar populations. Cougar dens are found primarily in old growth forests. This cut block is located within a rural / forest transition area and management strategies for cougar vary greatly by land owners.

Black tailed deer

Black tailed deer (*Odocoilus hemionos columbianus*) are not listed with the species or ecosystems at risk on the MoE Conservation Data Centre's tracking list for the South Island Forest District.

There are no grandparented Ungulate Winter Ranges (UWR) or UWR proposed for confirmation in the vicinity of this cutblock. The harvesting of this cutblock will therefore not significantly impact deer with regard to winter range habitat. The harvested block will provide significant spring forage opportunities to the ungulates until the plantation reaches crown closure.

C.3. SENSITIVE AREAS

Prescribed site conditions: This block has been engineered to preserve sensitive sites and exposed rocks and shallow soil/rocky sites. Care must be taken when operating machinery to ensure adverse impacts to the soil do not occur.

C.4. FISHERIES and STREAMS

Prescribed site conditions: All in block streams are non-fish bearing. Care is to be taken when operating in areas adjacent to all stream and NCD's. Operations must adhere to the riparian management strategies outlined in Appendix 1.

Block 2 is within the Sproat Lake Community Watershed and all internal streams are less than 1.5m width and are classified as S4 or NCD. All streams 1.5m and larger are defaulted to S3 and have a 20m Riparian Reserve Zone and are located outside of block boundaries.

C. 5. WATERSHEDS

The proposed cutblock is in the Sproat Lake Community Watershed but not in any Fisheries Sensitive Watersheds.

Prescribed site conditions: Care must be taken during harvesting activities to ensure that surface water is not adversely impacted by the proposed operations.

C.6. RECREATION

The current recreational use is estimated as moderate and consists of hunting, mushroom picking, hiking and wildlife viewing.

Prescribed site conditions: Harvesting activities will not preclude future recreational opportunities, as visual, riparian and wildlife values will be maintained due to the high level of retention.

Block 2 is in classified as 'Roaded Modified' for Recreation Opportunity and Moderate for Recreation Feature Inventory and Significance.

The active roads TA560, TA568 and TA568D are the roads which will be used to haul Block 2 timber, they are also the access to the trail head of the Mount Adder Trail, during harvesting actions will be required to protect users of this recreational trail.

C.7. VISUAL LANDSCAPE

The proposed cutblocks Block 1 & Block 2 are within a scenic area with a Visual Quality Objective (VQO) of Partial Retention (PR), associated with the Pacific Rim Highway (Highway 4).

The cutblocks were reviewed during the pre-harvest stage and the layout was engineered to ensure that the setting met the VQO requirements.

A Visual Impact Assessment was completed for the Alberni Valley Community Forest by Silvacare Inc. in September 2015. The assessment used 4 separate View points and found the block to meet the Partial Retention VQO.

Prescribed site conditions: The four viewpoints used are from points along the Pacific Rim Highway.

C.8. CULTURAL HERITAGE

This cutblock is located within the Hupacasath First Nation asserted traditional territory. No CMTs were identified during the field review or layout of this old growth stand.

Prescribed site conditions: If any cultural heritage objects and/or CMT's are discovered during the CMT field review, an AIA should be conducted and the prescriptions should be reviewed prior to harvest or road construction. Should resources be identified during the active harvesting or road building, all activities must cease and Hupacasath First Nation must be informed of the type and location of suspected archaeological resources. Approval from Hupacasath First Nation is required prior to resuming operations.

C. 9. OTHER RESOURCES

This cutblock is in trap line tenure (#TR0107T407).

This block is in Guide Outfitter Area AR84650000.

Block 2 is located in the former Timber Licence T0028-13.

D. CRITICAL SITE CONDITIONS

SU	CRITICAL SITE CONDITIONS THAT AFFECT THE TIMING OF OPERATIONS,
	AND HOW THEY AFFECT THE TIMING
SU All	To avoid rutting and understory disturbance, do not operate tracked machinery within 5 m of water channels. Cease road-building and yarding activities during and immediately following periods of heavy rainfall. Restrict the use of ground based operations to dry soils as to avoid adverse affects to the soils. Use sufficient puncheon where necessary.

-	
SU All	Rainfall shutdown procedures will be in compliance with the "Rainfall Shutdown Criteria". Specifically, the calculated rainfall shutdown threshold is 100 mm in a 24 hour period.
SU All	No ground-based machinery is permitted within 5 m of any or NCD without written permission from a Tseshaht First Nation Engineer or at an authorized NCD.
SU All	Ground based operating procedures should be conducted as to avoid negative impacts to the soil. To avoid disturbance to sensitive soils, ground-based harvesting and forwarding should only occur in drier conditions.

PAGE: 7 of 11 DATE: Sept 28, 2015

LOCATION: Alberni Valley Community Forest

E.1 Riparian Management Strategies - refer to Appendix 1.

Block 2

E.2 Gully Management Strategies (Coast)

E.3 FOREST HEALTH MANAGEMENT STRATEGIES

MANAGEMENT STRATEGIES TO REDUCE FOREST HEALTH RISKS

Biotic

K2D

092F024

No incidences of hemlock dwarf mistletoe infection were identified during the SP fieldwork and no treatment is required.

Abiotic – Wind

Novafor Forest Services Ltd. has completed a Windthrow Report. The block does not require pruning. Moderate sized crowns with a species composition should allow the stand to withstand winds.

E.4 COARSE WOODY DEBRIS MANAGEMENT STRATEGIES

Sound and rotting logs and stumps that provide habitat for plants, animals, and insects and are a source of organic matter for future soil development will be maintained through the retention of trees in the wildlife tree patch and timbered leave areas, and the distribution of logging residue across the cutblock. The current allowable limit for post harvest residue that qualifies as harvestable is 10m³/ha in second growth.

E.5 MANAGEMENT STRATEGIES TO MANAGE AND CONSERVE ARCHAEOLOGICAL SITES

In the event archaeological resources are encountered, suspend all harvest activities in the immediate vicinity and inform the engineer as soon as possible, of the location(s) and type of the archaeological resources and the nature of the disturbance.

F. SOIL CONSERVATION

F.1 SITE DISTURBANCE						
		HAZARD RATINGS		SOIL CHARACTERISTICS		
	(if logging method	ds other than cable or	aerial are proposed)	(if temporary access structures are proposed)		
SU	SOIL COMPACTION	SOIL DISPLACEMENT	SOIL SURFACE EROSION	DEPTH TO UNFAVOURABLE SUBSOIL (cm)		TYPE OF UNFAVOURABLE SUBSOIL
				MIN	MAX	
Α	Moderate	Moderate	Moderate	60	>60	Hardpan / Bedrock
В	Moderate	Moderate	High	50	>60	Hardpan / Bedrock

GROUND BASED OPERATING LIMITATIONS: Soil hazard ratings of moderate to high soil compaction, low to moderate soil displacement and low to moderate surface erosion necessitate specific operating procedures with regard to ground based machinery use, to avoid negative impacts to soil.

SLOPE INSTABILITY INDICATORS: N/A

SOIL DISTURBANCE LIMITS							
MAXIMUM ALLOWABLE SOIL DISTURBANCE WITHIN THE NET AREA TO REFOREST (%)	MAXIMUM EXTENT SOIL DISTURBANCE LIMITS MAY BE TEMPORARILY EXCEEDED TO CONSTRUCT TEMPORARY ACCESS STRUCTURES (%)						
25.0%	5.0%						
Maximum allowable soil disturbance within NAR for roadside work area.							
MAYIMUM PROPORTION OF TOTAL AREA LINDER PRECORIETION ALLOWER	FOR REPLANIENT ACCESS 5.40/						

MAXIMUM PROPORTION OF TOTAL AREA UNDER PRESCRIPTION ALLOWED FOR PERMANENT ACCESS: 5.4%

F.2 REHABILITATION TIME FOR TEMPORARY ACCESS STRUCTURES

Maximum Allowable Time To Complete Rehabilitation (Measured From Completion of Harvest): The timing to rehabilitate the road will be concurrent with harvesting operations.

F.3 MANAGEMENT STRATEGIES FOR TEMPORARY ACCESS STRUCTURES

			FOR EXCAVATE	D AND BLADED TRAIL	s
SU	GENERAL LOCATION:	SEDIMENT DELIVERY RISK (in community watershed only)	MAX ALLOWABLE HEIGHT OF CUTBANKS (m)	AVERAGE HEIGHT OF CUTBANKS (m)	EQUIPMENT TO BE USED (IF OTHER THAN EXCAVATOR)
All	(list spur name & stations to be rehabilitated)	N/A	N/A	N/A	N/A

K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 8 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	---------------	---------------------

G. SILVICULTURAL SYSTEMS

G.1 SILVICULTURAL SYSTEMS

Clear cut with Reserves.

WTP TREE SPECIES AND FUNCTION:

The WTP provides wildlife values, and is designated as long-term reserve. The wildlife tree patch will also contribute to the overall retention. For a description of the wildlife tree patch refer to section C.2. Wildlife and Biological Diversity. Where feasible and safe to do so, snags have been included. The function of the leave area is to maintain lifeboats and enriching reestablished stands with structural features that would otherwise be absent, as well as contribute to the forest influence and add to the stand level

DESCRIPTION OF POST HARVEST STAND STRUCTURE and SITE CONDITION

The post harvest stand structure will consist of a forest stand opening buffered and interspersed by timber leave areas. The TLAs and WTP will facilitate the retention of high biodiversity values with high levels of forest influence while maintaining the wildlife properties of the area.

H. STOCKING REQUIREMENTS

Free (Free Growing Stocking Standards								
SU	Are a (ha)	Regen Delay (yrs)	Preferred Species (P); Height (m)		Acceptable Species (A); Height (m)	Target WS P&A #/ha)	Min. WS P&A (#/ha)	Min. WS P (#/ha)	Min. Intertree Dist. (m)
Α	9.7	6	Hw 1.25, Hm1.0, Cw 1.0, Fd 2.25, Yc 1.0		Ba 1.75	900	500	400	2.0
В	1.2	3	Fd	1.5, Hw 1.0, Cw 0.75	Hm 0.75, Yc 0.75	800	400	400	2.0
SS	S #	Site Series No.	Early FTG	Late FTG (yrs)	Max. Coniferous @ FTG (#/ha)	Der	pacing nsity n) (#/ha)	Height	vs. Comp. (%)
1028	8545	01(60) 05(40)	8	11	10,000	1,500	0/500		150
1028	8547	03(90) 02(10)	8	11	10,000	1,400	0/400		150

A MITD of 1.5m will be accepted throughout the rest of the NAR to accommodate poor plantability areas (e.g. minor slash accumulations, wet or rocky sections, etc) or to utilize the most suitable planting microsites.

SU A: Plant Fdc (70%) and Cw (30%)

SU B: Plant Fdc (100%)

A DAMINICED A TION

I. ADMINISTRATION	
PRESCRIPTION PREPARED BY (RPF SIGNATURE AND SEAL):	
BENET J. DURKAN BRITISH COLUMBIA AO. 3761	RPF Name (Printed) Date:September 25, 2015RPF No: 3767 Original Prescription Date (if Amended):

K2D	092F024	Block 2	LOCATION: Albern	i Valley Community Forest	PAGE: 9 of 11	DATE: Sept 28, 2015
PRESCI	RIPTION REFERENC	ES:		SIGNING AUTHORITY:		
☑ ON F □ NOT / ☑ 1:5,0 □ First □ SP fores reco □ ADD	TTACHMENT ILE APPLICABLE 000 SP MAP Nation Letter FIELD DATA CARDS	soil hazard as nstability indicate NTS	sessment, treatment			
VISU RIPA RIPA RIPA RIPA RIPA RIPA RIPA RIPA	EMENTS REQUIRED JAL IMPACT ASSESS ARIAN ASSESSMENT ARIAN ASSESSMENT RAIN STABILITY ASS LY ASSESSMENT (N HAEOLOGICAL IMPA T INCIDENCE SURVE WDOWN HAZARD AS TURALLY MODIFIED TAT DIVERSITY ASS	SMENT (Silvaca T: ENGINEERIN T: FISH ASSESS BESSMENT (Ge I/A) ACT ASSESSMI EY SSESSMENT (N TREE SURVEY	re Inc.) G STREAM CARDS SMENT (Novafor) coforestry) ENT lovafor) ((N/A)	The procedures required by r assessment that is required unde Planning Regulation. This Site recommendations of any assess Operational and Site Planning Repart of the prescription, the prescrecommendations. While I did not personally superaversing or assessments, all well qualified contractors. The acceptable of a seal by a Regis	er section 36.1 of the Plan is consistent sment required unde egulation. While the cription is consistent pervise the work (work has been ten e work appears to	e Operational and Site with the results and er section 36.1 of the assessments are not with their results and engineering, layout, dered by the MoF to fulfill the standards

☐ GREEN UP INFORMATION (N/A)

☑ PERMANENT ACCESS CALCULATION SHEET (Novafor)

K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 10 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	----------------	---------------------

APPENDIX 1

E.1 RIPA	RIAN MANAG	EMENT	STRA	TEGIES									
Stream, Wetland or Lake	Riparian Class	Gully Debris Movement (Y/N) Potential*											GEMENT
Debris			Stream		`	RRZ	RMZ	Wetlands	RRZ	RMZ	Lakes	RRZ	RMZ (m)
size						(m)	(m)		(m)	(m)		(m)	, ,
Fine	Twigs, needles, leaves			S1		50	20	W1	10	40	L1	10	0
V. Small	< 3' x 6"			S2		30	20	W2	10	20	L2	10	20
Small	< 12' x 6"			S3		20	20	W3	0	30	L3	0	30
Large	>12' x 6"			S4		0	30	W4	0	30	L4	0	30
				S5		0	30	W5	10	40			
				S6	i	0	20						
Definition s	NAR	Net A	rea To	Be Refore	ested.								
	NCW FA/BL FA YA HH RS FE BPT NHZ YX YV CCL MFZ MC HC	NAR Net Area To Be Reforested. NOD NCW FA/BL Fall Away. Timber is to be felled away. Leaners and danger trees that cannot be safely felled away shall be felled and bridging the stream. FAI Away. Timber is to be felled away. Yard Away. Timber is to be yarded away. In order to improve deflection, cables are allowed to be suspended above stream. Non-fish streams: merchantable leaners and danger trees which have been felled across the stream will, necessity, be yarded across the stream. HH 100% Harvested (no retention of saplings). RES Retain Saplings within 5m of the stream channel (non-merchantable). Feathered Edge. BPT NHZ Nanger trees are to be felled away from the zone. Safe trees that cannot be felled away are to be left as part of the NHZ. Danger trees must be felled and will be left for future LWD or removed if detrimental to the stream. FX Fall Across. Stream bank protection measure: Maximize deflection to minimize stream bank disturbance. Yard Vertically. Clean any introduced debris concurrent with logging. Machine Clean transportable introduced large woody debris (LWD) and accumulations concurrent with yarding. Hand Clean introduced transportable debris. Assess for Hand Cleaning, post-harvest, based on stream transport capability. Stream cleaning will be done if necessary.									d above the eam will, by s the stream as part of		

Where prescribed, streams will be cleaned when a safe working distance has been established. Fine material will not be removed as part of any debris management strategy unless otherwise specified.

Do not remove **stable natural material** that is in a stream or that is embedded in a stream bank, or a root system that contributes to stream bank stability and fish habitat during harvesting or stream cleaning (except when constructing or modifying an authorized stream crossing).

Temporary stream crossing areas may be designated and must be identified on the SP Map. Within this designated area, no more than three crossings of the stream may be made at any one location.

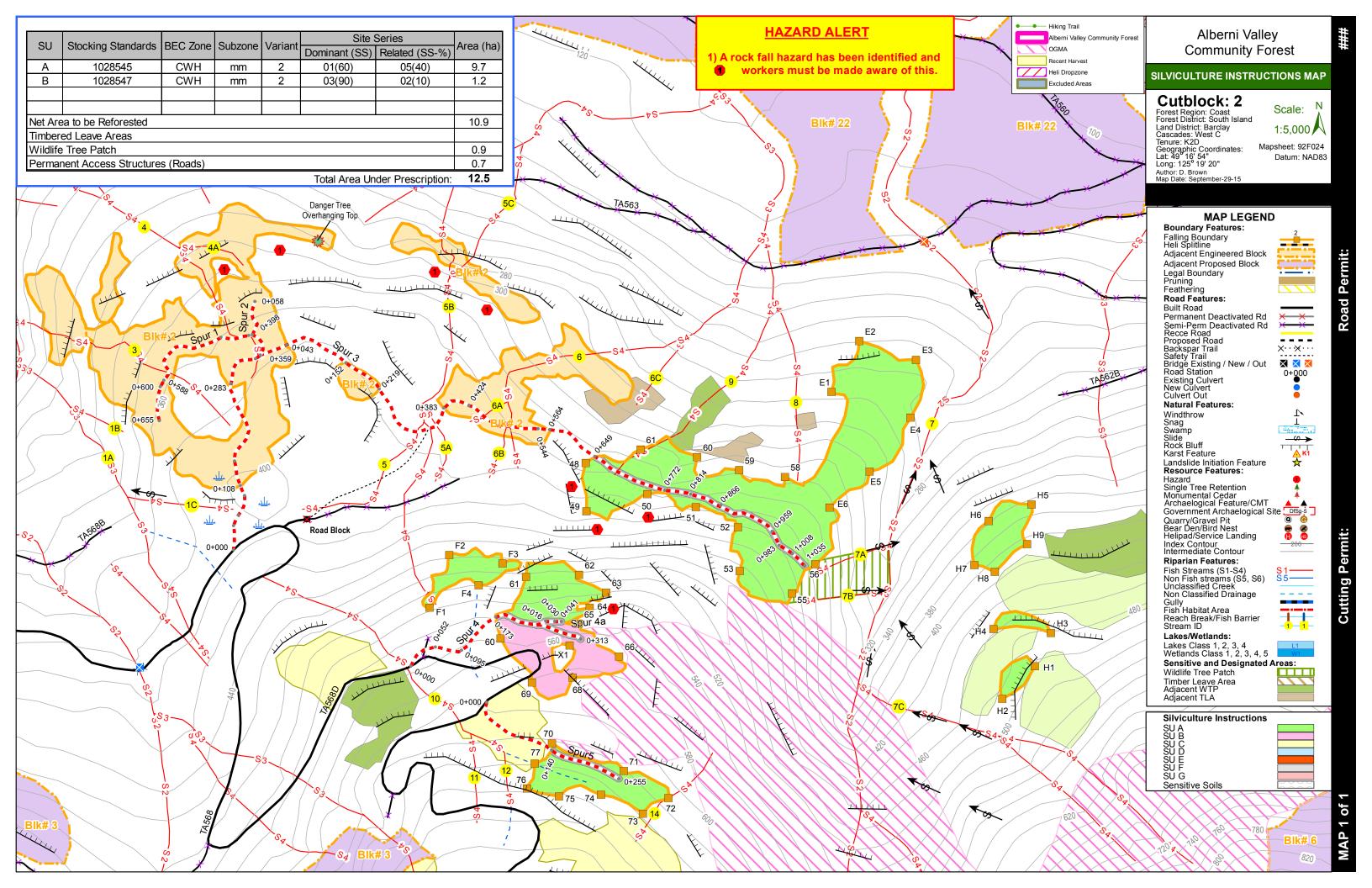
Reserve zone and management zone widths are provided as slope distances.

Note: The stream (riparian) prescriptions pertain to the portion of the stream within the harvest area. Where the stream lies outside the harvest area and a portion of the RMA is within the harvest area the prescription will be HH, FA, YA, by necessity. **The basal area retention values provided (0) pertain to the portion of the RMZ that is within the harvest area. In these areas, all merchantable stems will be harvested leaving a residual basal area of 0m²/ha. Where the RMZ falls within retention areas (e.g. TLA, WTP), or is completely outside the harvest area, no harvesting will occur; therefore, 100% of the pre-harvest basal area will be retained. Where partial cutting (e.g. feathering) is prescribed within the RMZ the actual range of residual basal area for that section will be provided. When this document is signed, the signing forester is certifying that the RMP is consistent with the approved FDP and the riparian management strategies contained within.

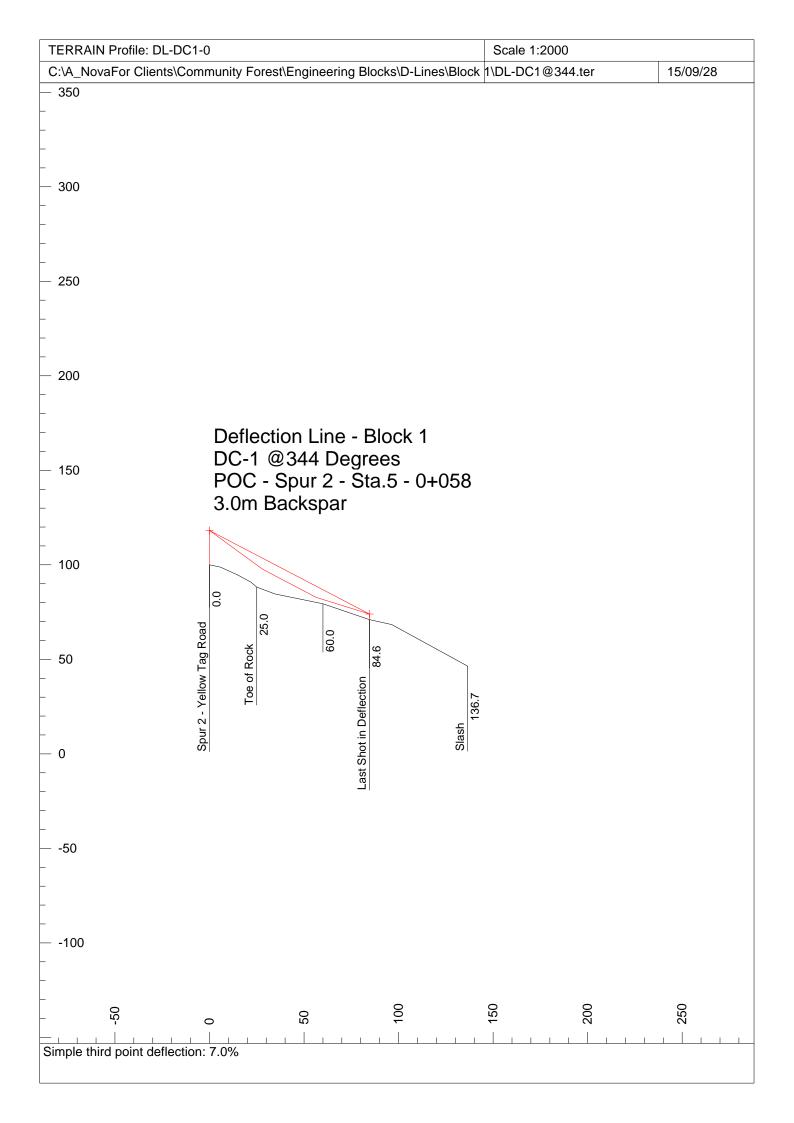
E.2 GULLY MANAGEMENT STRATEGIES (COAST)										
Stream/	Downstream	Upstream Debris	Water	Debris Flow	Management Strategy Options					
Gully	Impact	Flow Potential	Transport	Initiation	, in the second					
No.	Potential		Potential	Potential						
STREAM	7 IS A GULLY LO	CATED OUTSIDE OF	THE HARVEST A	REA OF BLOCK 2	•					
RIPARIAN MANAGEMENT ADMINISTRATION										
RIPARIAN	I MANAGEMENT S	STRATEGIES PREPA	RED BY:	RIPARIAN	I MANAGMENT STRATEGIES REVIEWED BY:					
Novafor Fo	Novafor Forest Services									

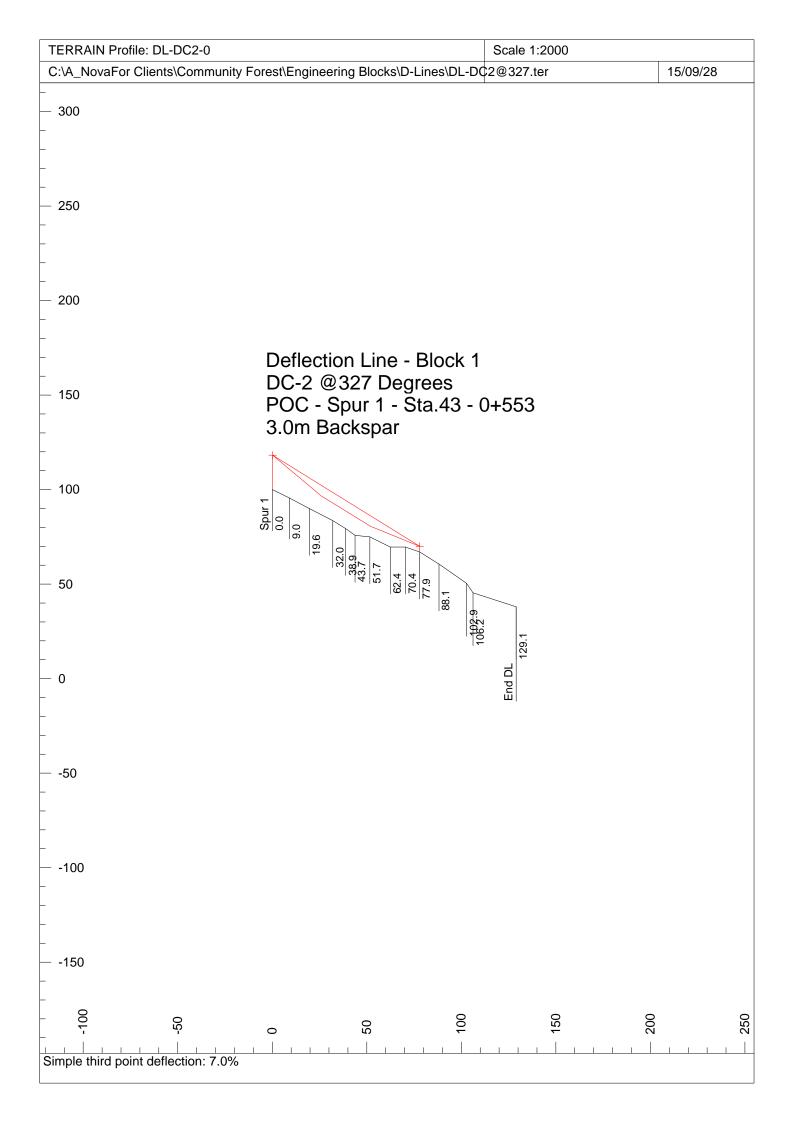
K2D	092F024	Block 2	LOCATION: Alberni Valley Community Forest	PAGE: 11 of 11	DATE: Sept 28, 2015
-----	---------	---------	---	----------------	---------------------

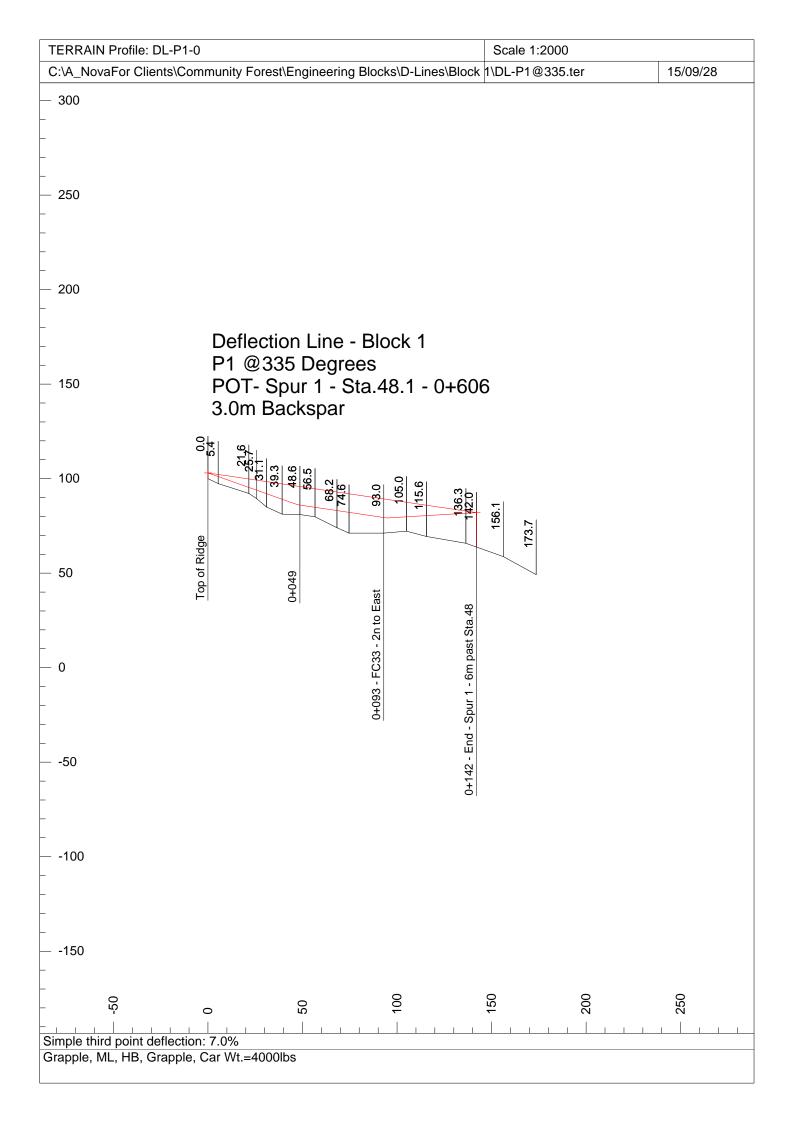
Alberni Valley Community Forest K2D

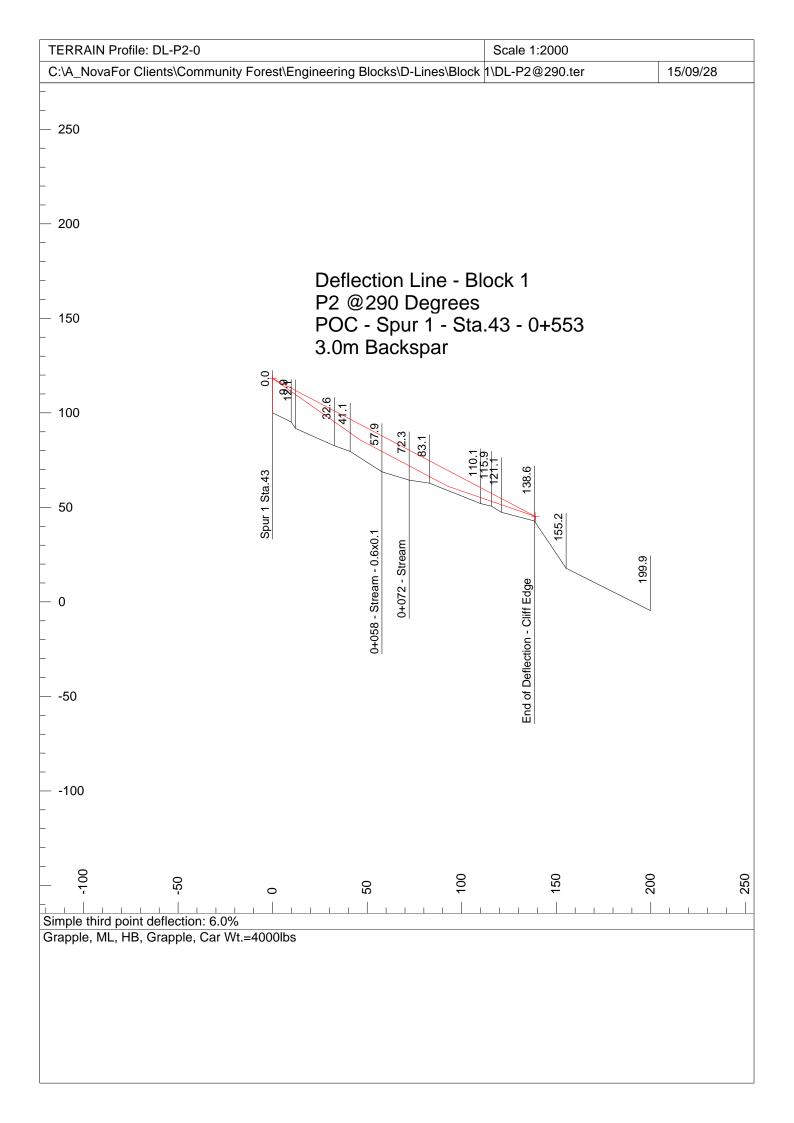

Region: West Coast Natural Resource Region / South Island Natural Resource District STREAM DATA FOR CUTBLOCK 164211

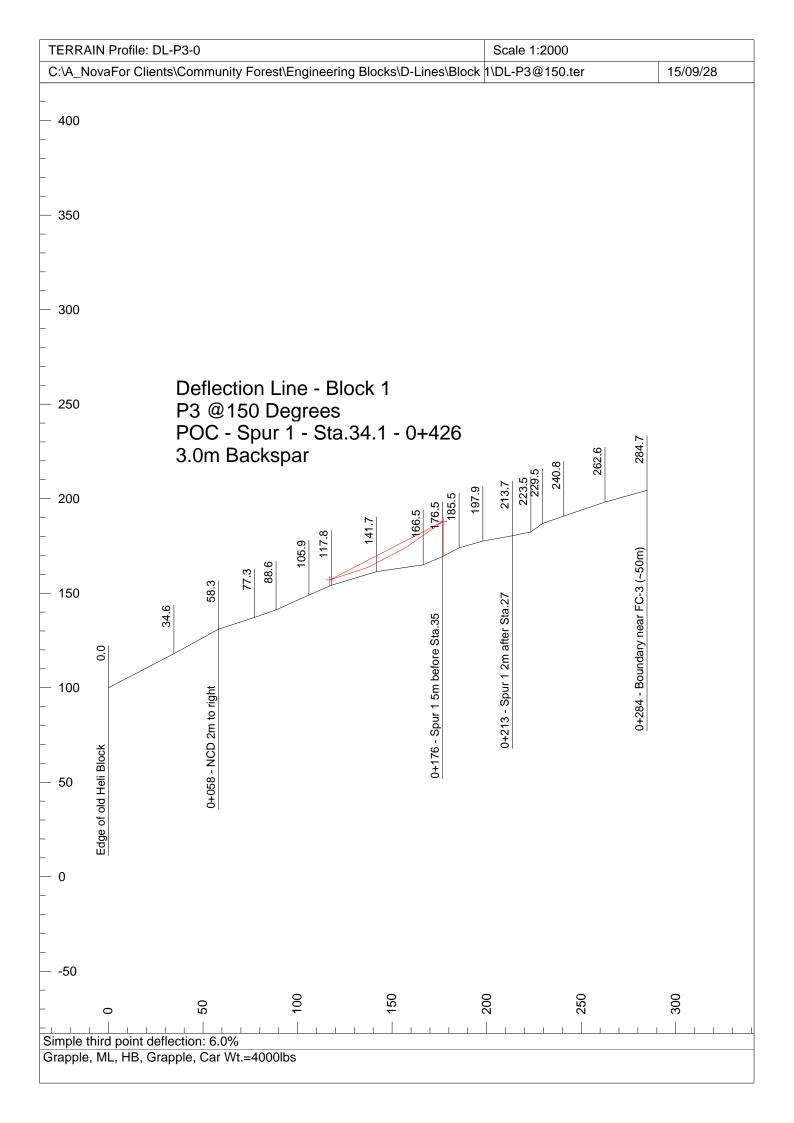

Streams Data Sheet											
Water Course #	Riparian Class	Gully (Y/N)	Ave. Gradient (%)	Ave. Width (m)	Streambed Material	L.W.D. Dependency (L/M/H)	Debris Transport Potential (L/M/H)	Stream Sidewall Gradient (%)	Bank Full height (m)		
5B	S4	N	50%	1.4	RBCG	L	M	30%	0.15		
7	S2	Υ	40%	10.0	RBCG	M	M-H	50%	1.5		
7A	S4	N	50%	0.3	CGO	L	M	50%	0.05		
7B	S4	N	50%	0.3	CGO	L	M	50%	0.05		
7C	S4	N	50%	0.3	CGO	L	L-M	30%	0.05		
8	S4	N	50%	0.3	CGO	L	L-M	30%	0.05		
9	S4	N	50%	0.4	CGO	L	L-M	30%	0.05		

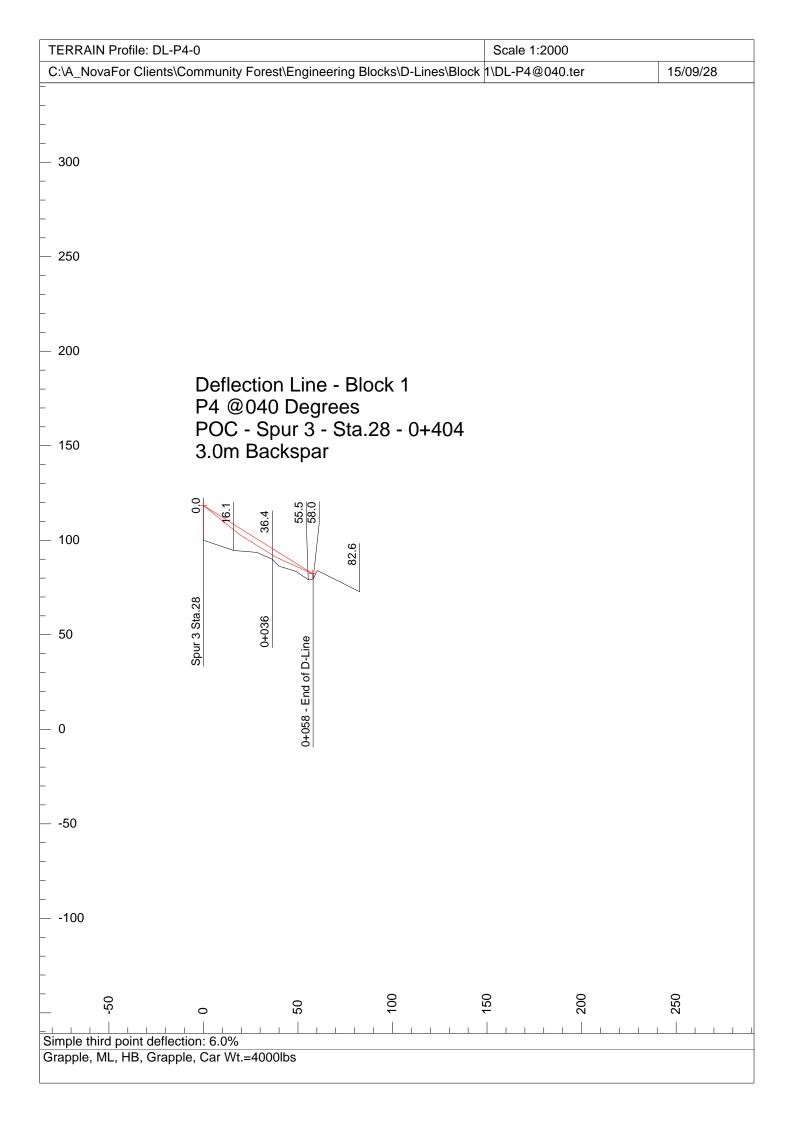

^{*}LWD Dependency is a function of the number of working pieces per 20m of stream length. Low: <=1, Moderate: 2-4, High:> =5. Streambed material: O=organics (decomposed plant and woody material); F=fines (<2.0mm); G=gravel (2.0mm to 65.0mm); C=cobble (65mm to 25cm); B=boulder (>25cm); R=Bedrock

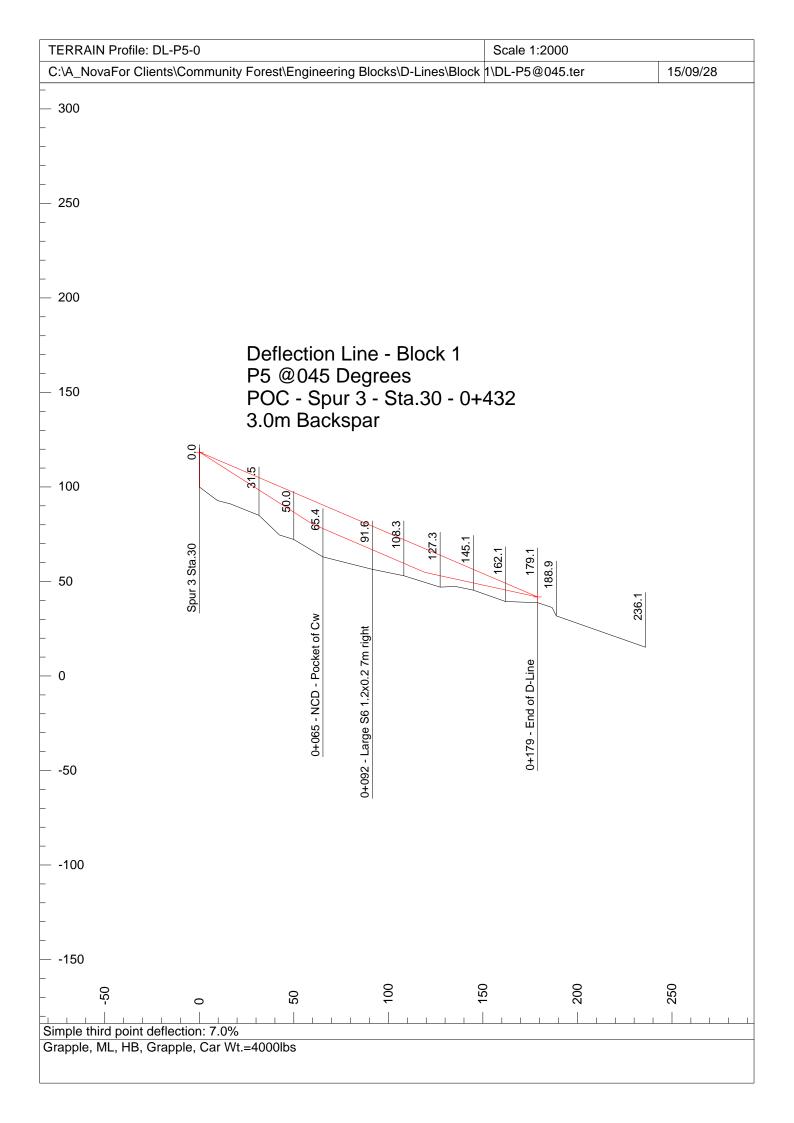

Stream sidewall gradient: The representative change in elevation from the top of the stream bank to a topographic break perpendicular to a stream. Bank: The rising ground bordering a stream channel. Banks are called right or left as viewed facing in the direction of the flow.

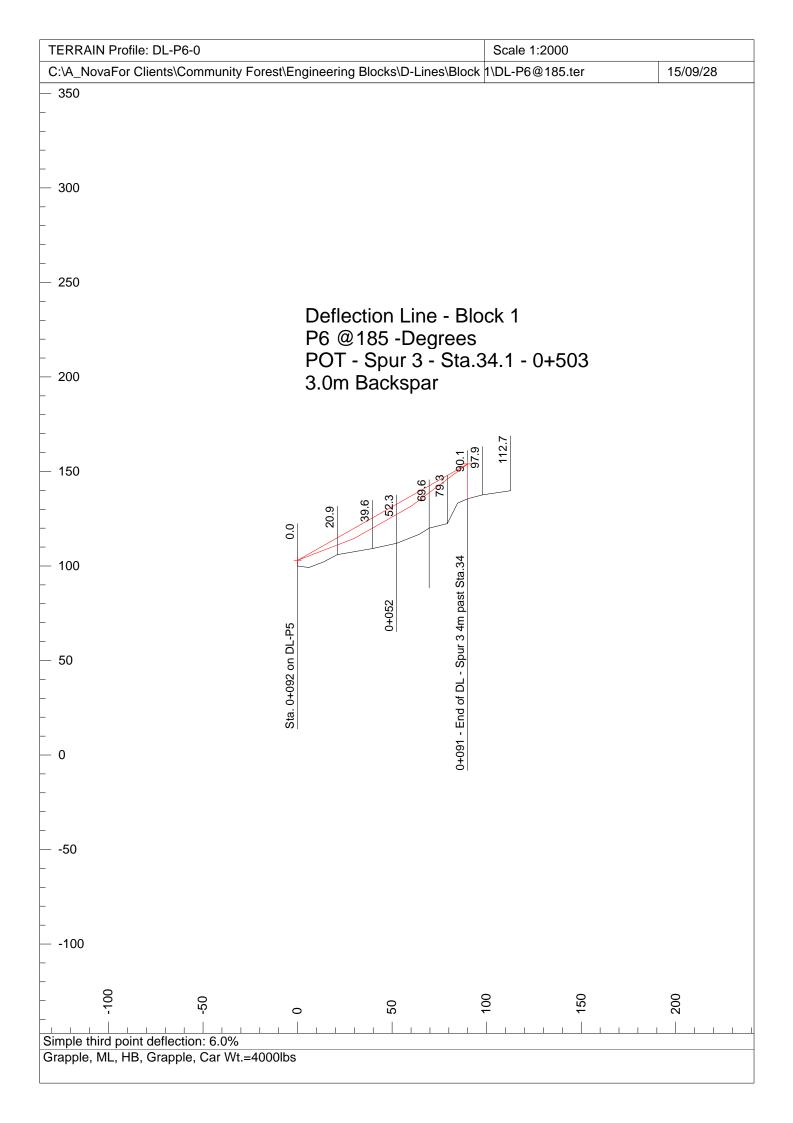

Bank-full height: The height at which a stream first overflows its natural banks ("Scour depth" on Stream Assessment Cards)

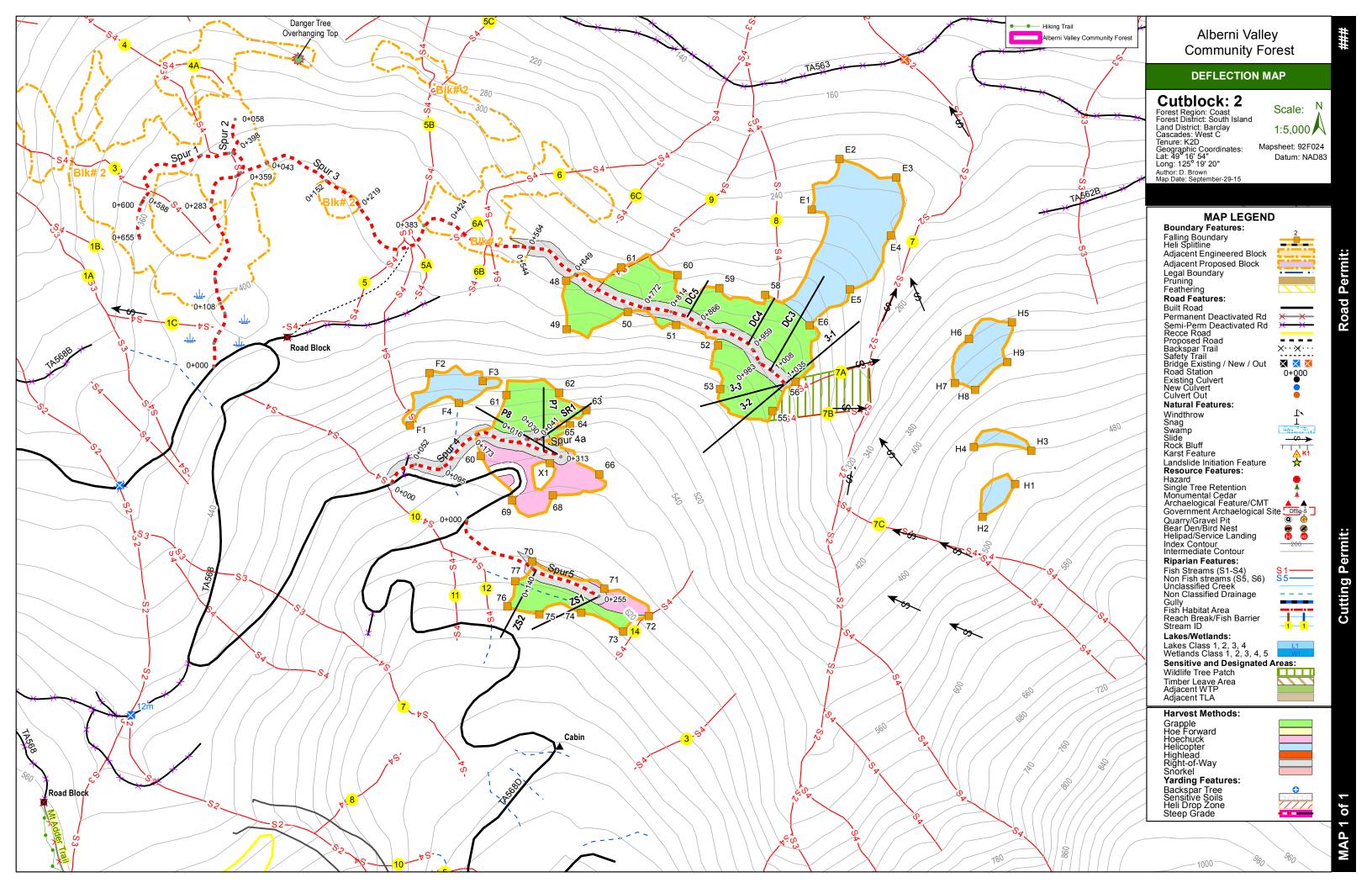


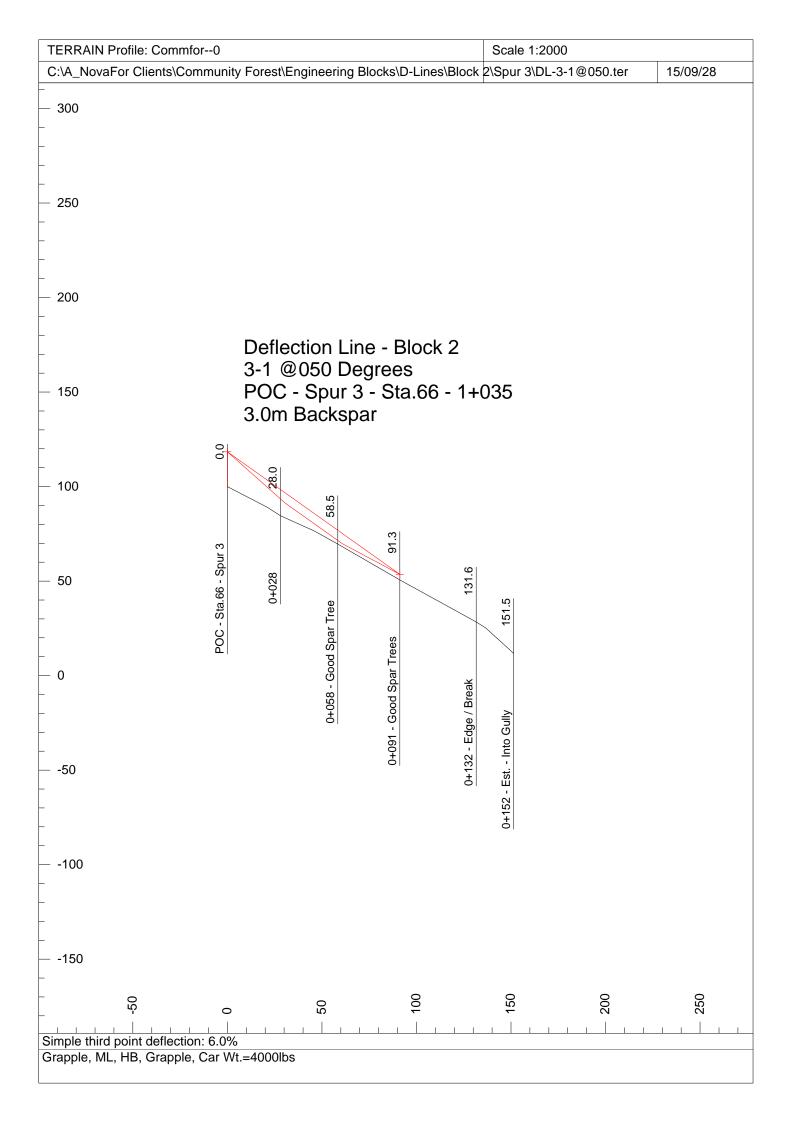


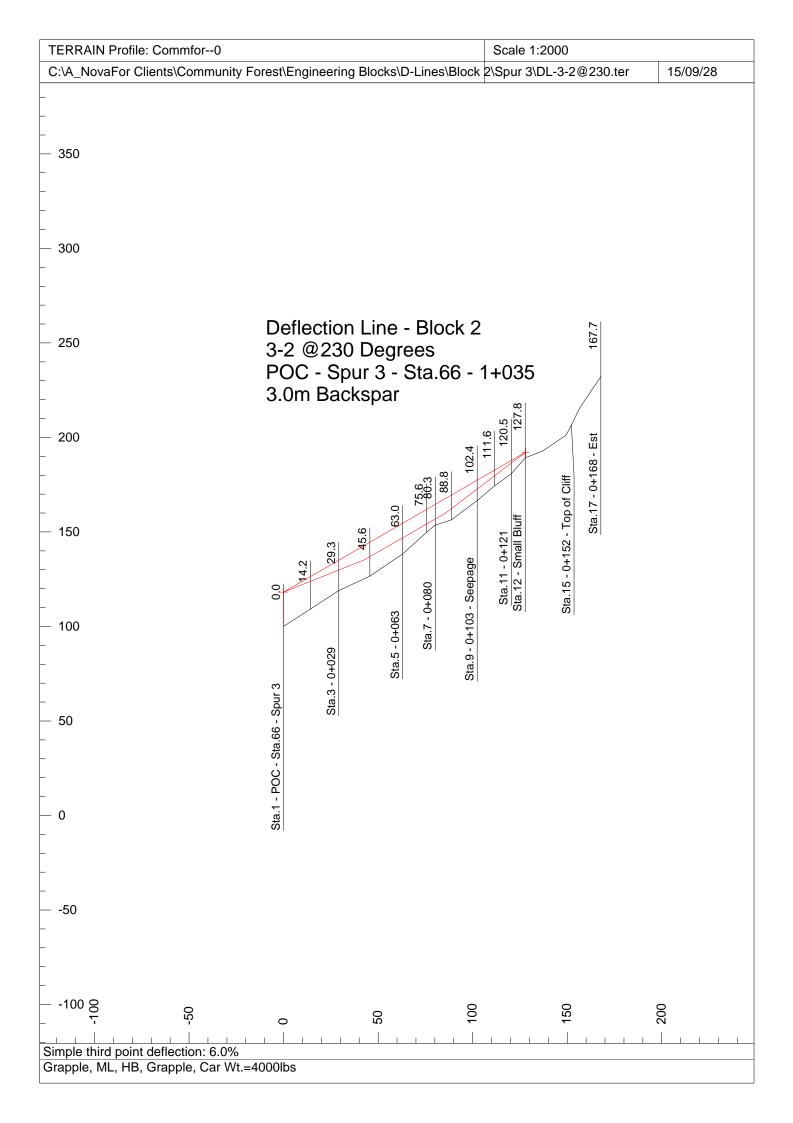


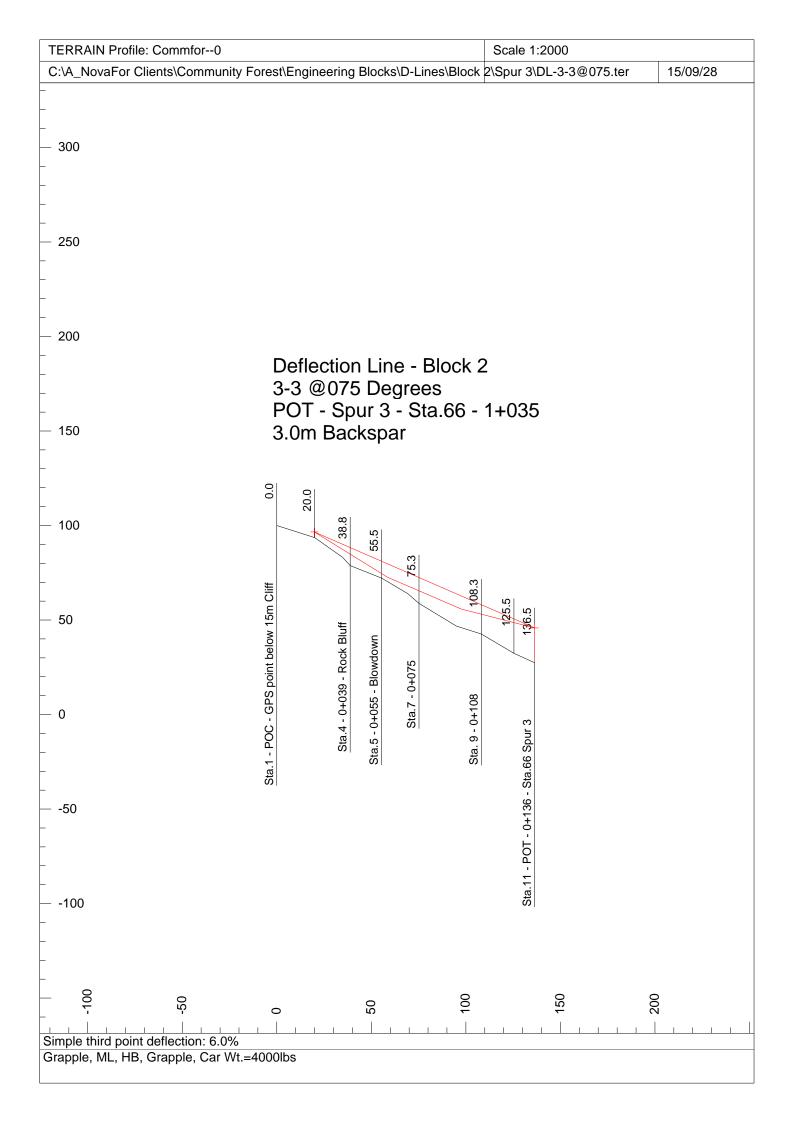


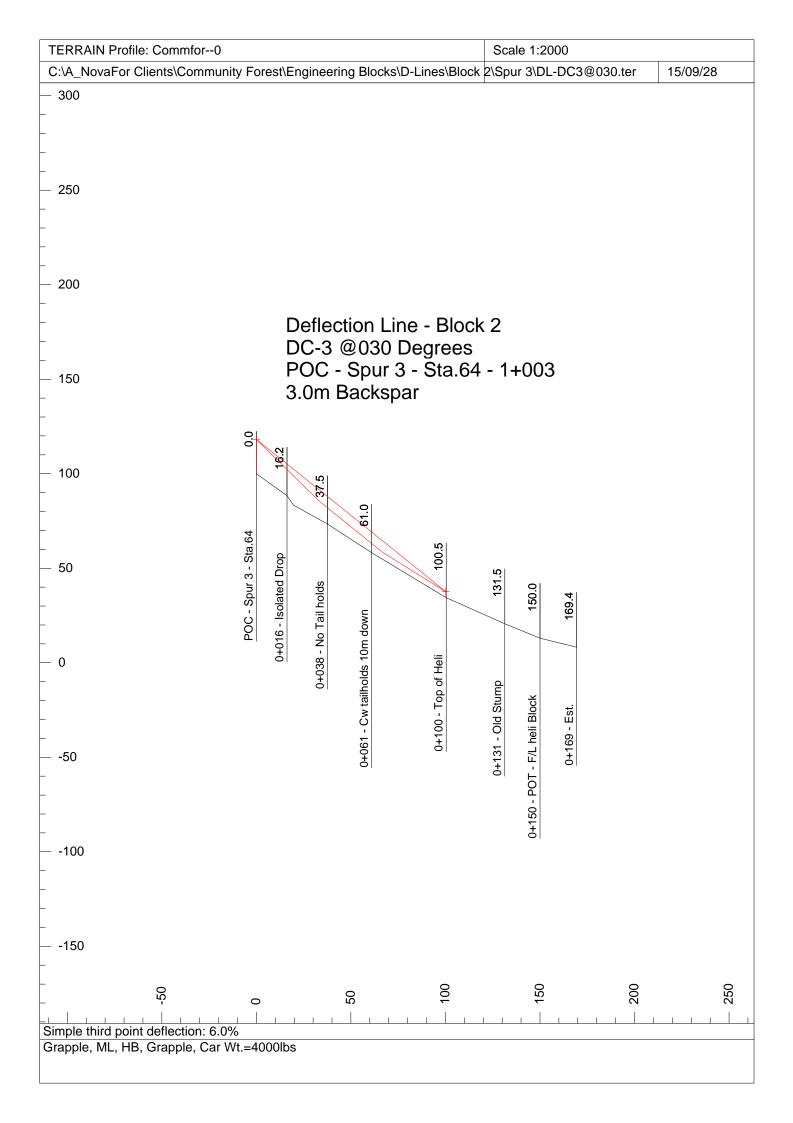


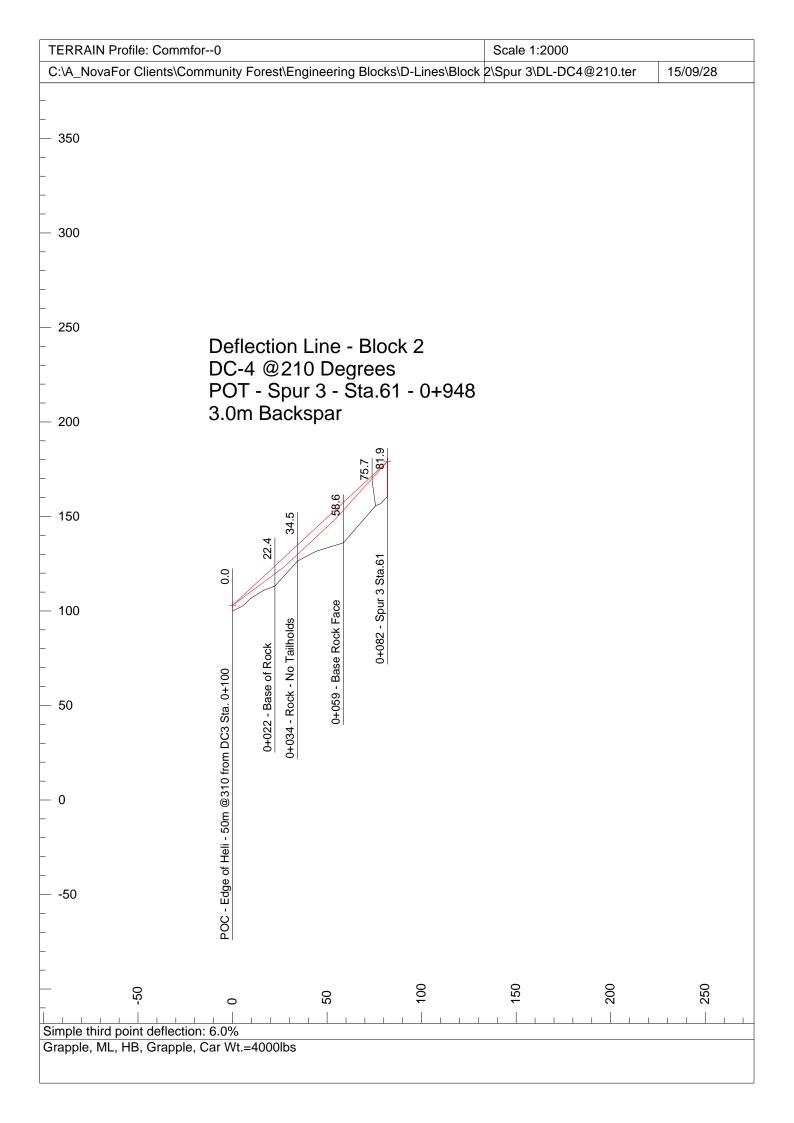


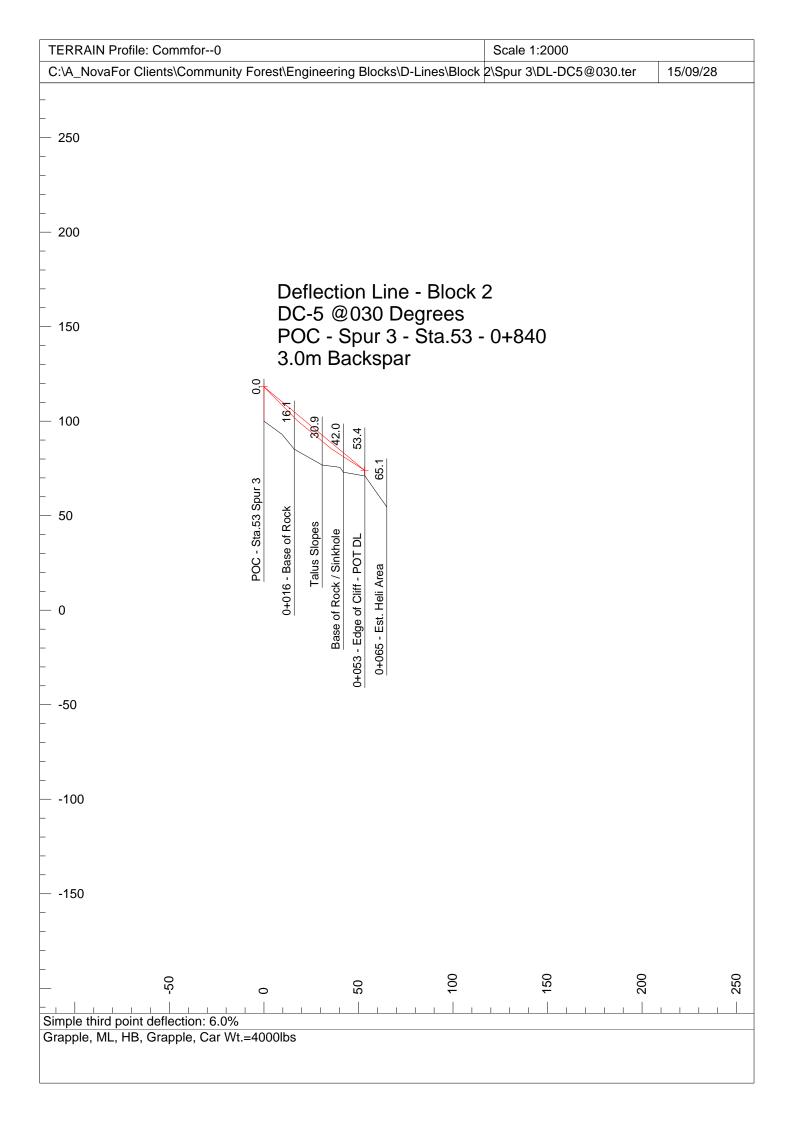


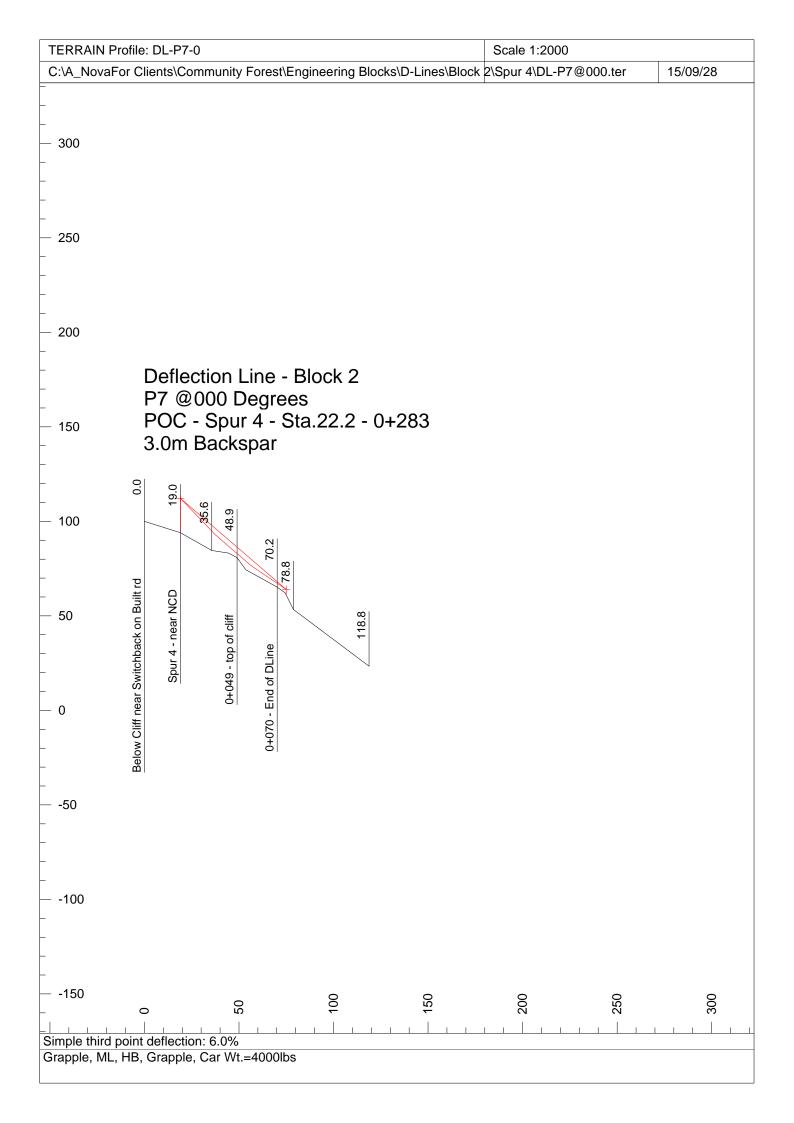


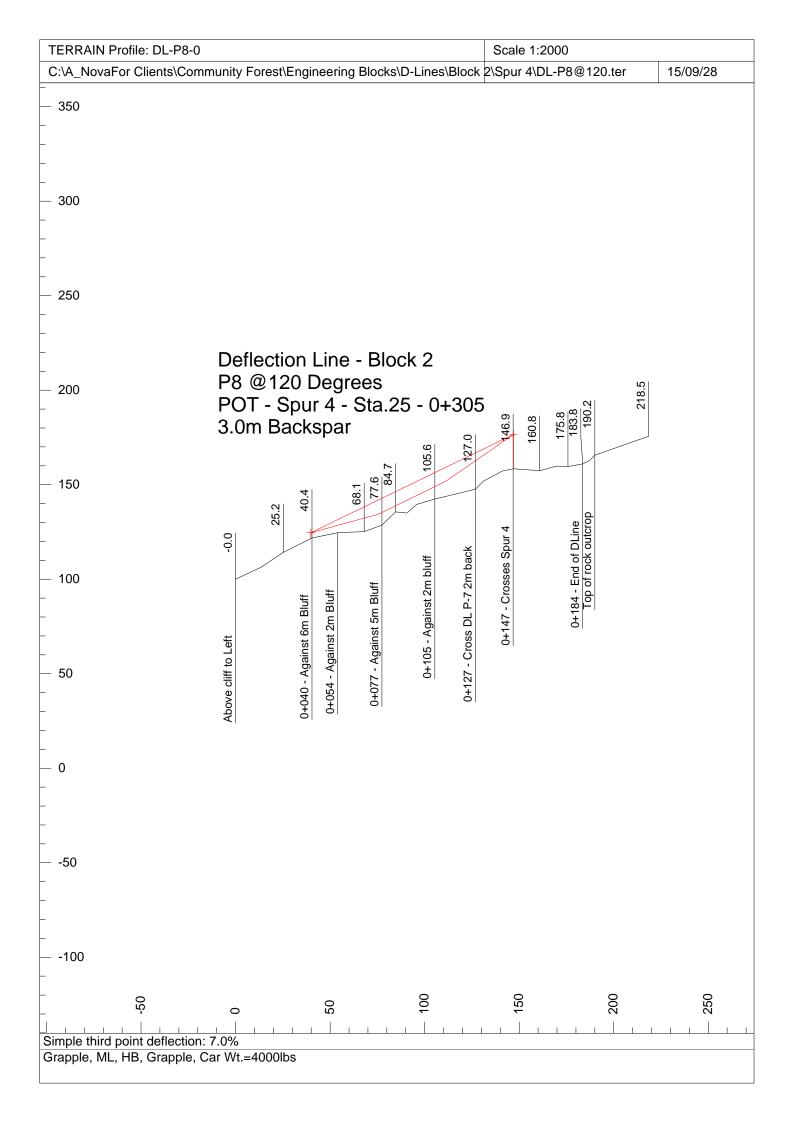


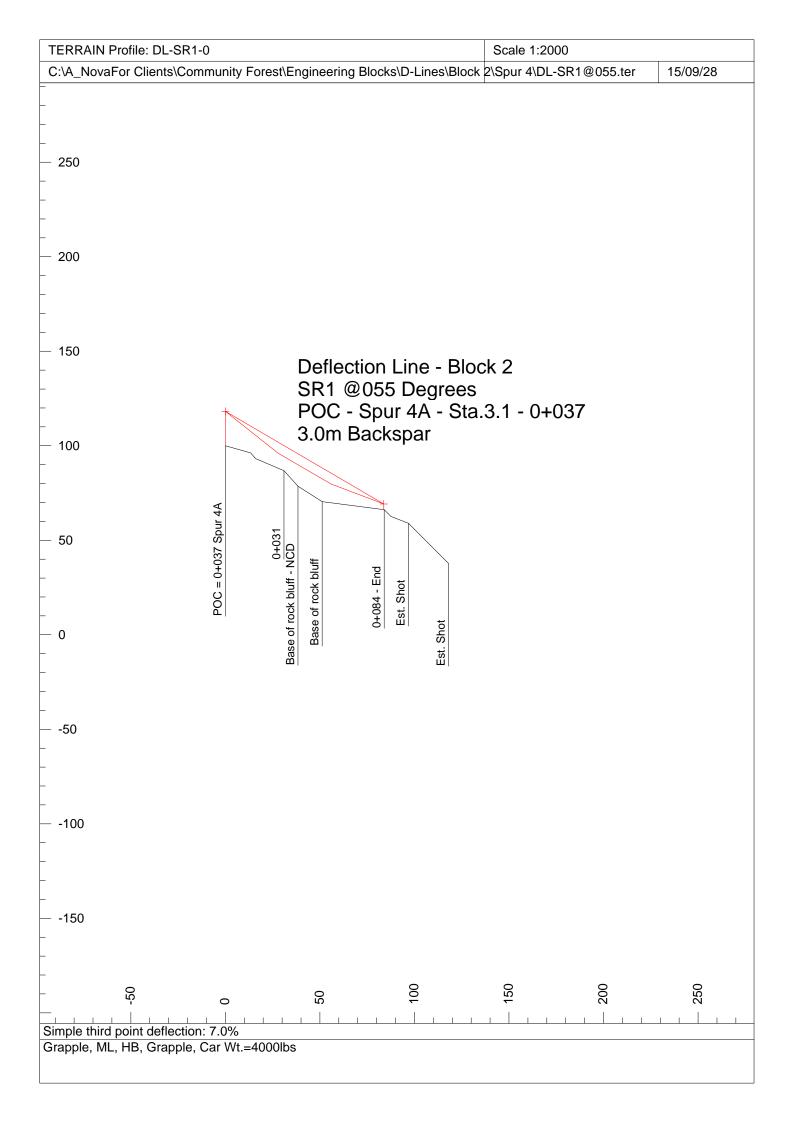


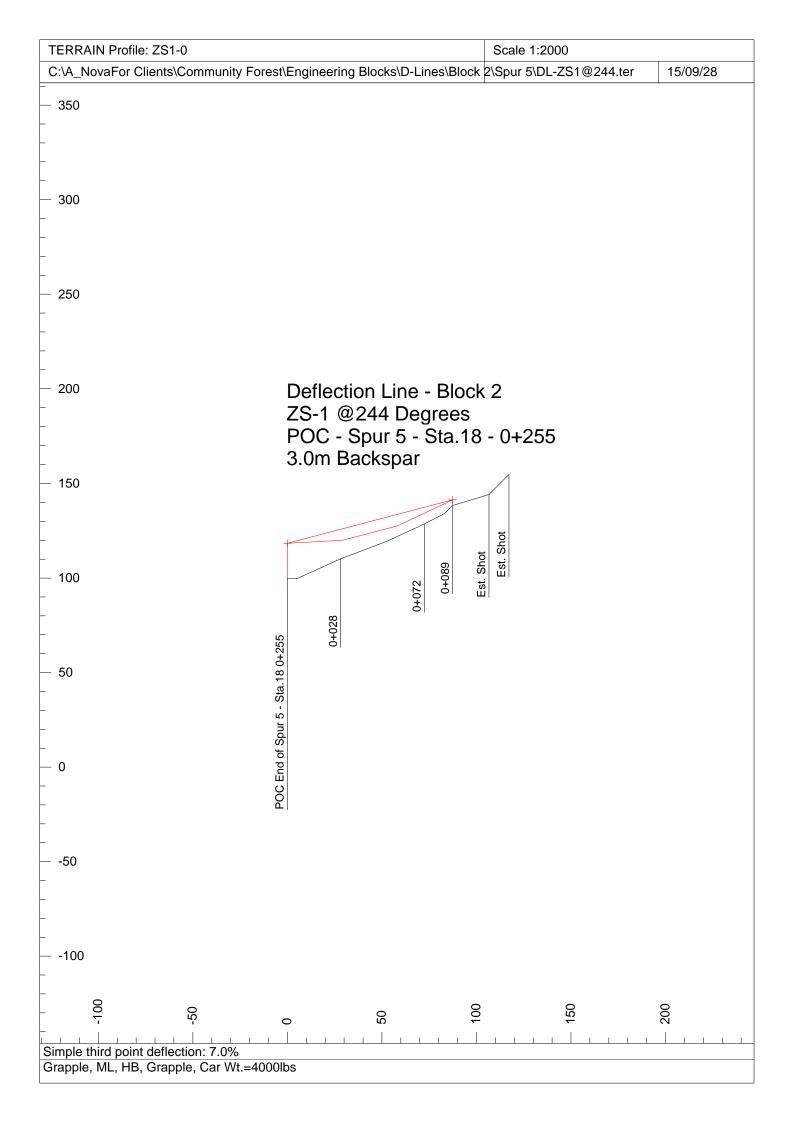


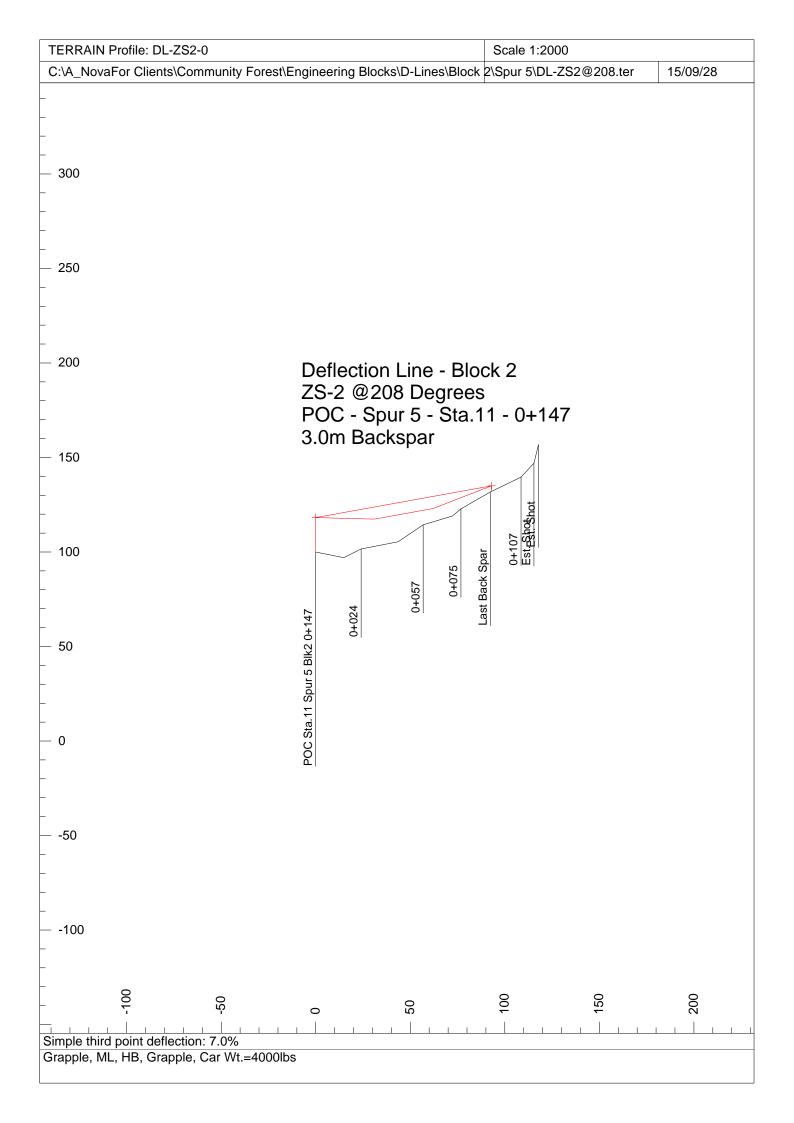














Safety Highlights – OPENING#TS2

ACCESS ROAD: TA568 CUTTING PERMIT: NO. 9 TIMBERMARK: K2D 009

STEEP ROAD GRADES

Road segments with gradients > 18% have been identified on the Harvest and Road Instruction Plan Map in and en route to the setting, they are as follows:

TA568J

- 130-156m
- 164-232m
- 264-276m
- 318-333m
- 433-480m
- 499-523m
- 648-677m
- 703-770m
- 820-856m

Prior to commencing log hauling operations the contractor must perform a risk assessment of the current conditions and adjust hauling activities to fit the traction conditions. Hauling for TS2 will not be permitted when ice and or snow is on the logging roads leading to or in the given setting (very low traction level). This has been determined using FERRIC step grade decent guidelines. The Ministry of Transportation guidelines are to be followed once hauling on the highway.

ROCK FALL HAZARD

Rock fall hazards have been identified in two areas of cutblock TS2. Area one is below the bluffs from FC 10 to FC#12 and from FC#5 to FC#6. Area two is along the base of the rock outcrops near FC#29, just east of the NCD. A more detailed description of these areas can be found on in the Terrain Stability Assessment Report. The areas may also be viewed on the harvest and road instructions map.

RAINFALL SHUT DOWN

Cutblock TS2 is within Rainfall Shutdown Area "5"

Shutdown Criteria: Activities must shut down if: The total rainfall reaches 72 mm in 24 hours. Onsite rain gages should be used and monitored daily. **Start-Up Criteria**: Activities may start-up when: The total rainfall is equal to or less than 50 mm in 48 hours. Refer to the Return to work guide in the tender document for more information.

Adequate recovery time should be given before building operations commence after a shutdown.

FALLING of SNAGS and DANGER TREES

There are minimal snags and danger trees within cutblock TS2. The following instructing area to be followed if dealing with snags and danger trees: In accordance with the Cutting Permit Authority and Work Safe BC Regulations, all snags and danger trees that endanger workers within a distance of 50m outside the cutblock boundaries, or within one and a half tree lengths, (whichever is greater), are approved for falling under these harvest

Safety Highlights – OPENING#TS2

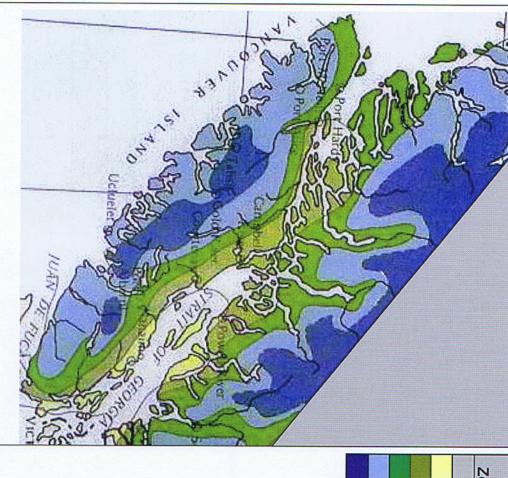
instructions. All danger trees and snags outside the cutblock boundaries that are required to be felled must be recorded on a map and provided to AVCF once falling has been completed. AVCF will be notified immediately if danger trees and/or snags are identified in groups and removal will result in the cutblock boundary being substantially impacted. Felled snags and danger trees up to 50m outside of the falling boundary meeting utilization specifications will be recovered.

EXCEPTION- Wildlife Tree Patch (WTP) areas and OLD Growth Management Areas (OGMAs) - Snags or danger trees can be felled within a WTP for safety reasons although only the portion of the felled snag or danger tree that falls outside the WTP can be recovered.

Steep Slopes

This setting is to be hand felled and logged utilizing both grapple yarding and helicopter harvest systems. Operators are to assess areas prior to operation.

Recreational Use


Cutblock TS2 can be accessed from the public. Adequate signs must be posted to inform public of active blasting, logging, and hauling of the area.

Leave Trees

Uniformly dispersed leave trees have been retained within the harvest areas as part of the **legal requirements** for cutblock's located within the Sproat Lake Special Management Zone No. 17. As such, these trees have been selected_and marked /identified with a blue panted "L" for leave tree. They are not to be cut or damaged during cutblock development.

Wet Weather Shutdown (modified Nov 7, 2006)

5	4	3	2			Zone
3500	3000	2500	1500	750	Precip (mm)	Mean Annual
90	7.5	60	40	20	(mm/24 hours)	Shutdown Threshold

TABLE B Local Soil Type Very Fredible (e.g.	Multiplier Factor
Very Erodible (e.g. lacustrine)	0.4
Erodible (e.g. organics, sands)	0.6
Least Erodible (e.g. colluvium, till)	0.8
Bedrock	1.0

89% +	71% - 88%	57% - 70%	0% - 57	TABLE C Slope Modifier
0.7	0.8	0.9	1.0	Multiplier Factor

Instructions:

- Use base shutdown threshold from Table A
- Multiply by Soil Type Modifier from Table B
- Multiply result by Slope Modifier from Table C

Result is rainfall shutdown threshold in millimeters in a 24 hour period

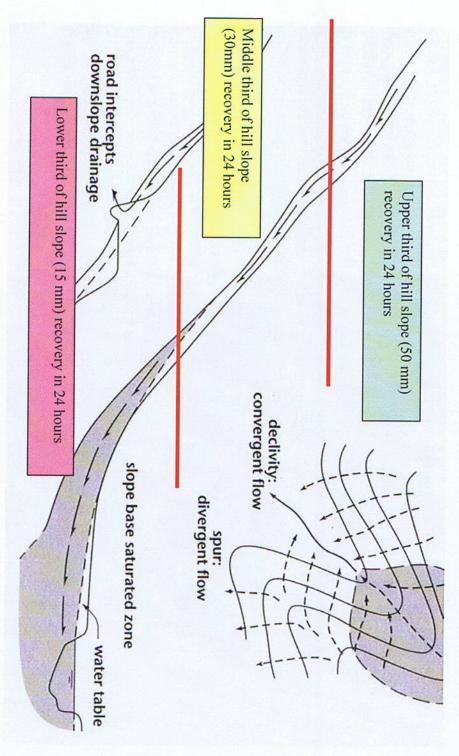
Example

ı
Table-A:-Mean-Annual-¤

The second secon	Bedrocka	Least·Erodible·(e.g.· colluvium,·till)¤	Erodible (e.g. organics, sands)	Very-Erodible-(e.g lacustrine)¤	в	TABLE-B-Local-Soil-Typen
	1.0¤	0.8н	0.6н	0.4п	Factors	Multipliens

0.7m	0.8п	0.9п	1.0¤	Factor	fiera Multipliera
89%-+□	71%88%□	·57%70%п	0%57¤	å	TABLE-C-Slope-Modifiera

For Dark Blue Zone 5; 24 Hr Shutdown Criteria = 90 x 0.8 x 0.8 = 58 mm


Return to Work Estimation Guide

Water balance returns to normal after a heavy rainfall period subject to a number of variables

- slope position
- -slope gradient
- soil type and depth (or proximity to bedrock)

Where a road is located above the worksite, interception by ditch lines may have the effect of increasing the recovery rate for lower slope

In an average situation precipitation input is reduced in a 24 hour period by the indicated values based on slope position Using the following sketch as a guide, identify the slope position of the planned activity (upper, middle and lower thirds)

COMMUNITY FOREST AGREEMENT K2D CUTTING PERMIT NO. 010

Ministry of Forests, Lands and Natural Resource Operations

PURSUANT TO the Community Forest Agreement No. **K2D** (the "Agreement"), this Cutting Permit is issued to:

ALBERNI VALLEY COMMUNITY FOREST CORPORATION

7500 Airport Road
Port Alberni, British Columbia
V9Y 8Y9
(the "Agreement Holder")

1.00 PERMIT AREA AND TERM

- 1.01 Subject to the Agreement and the Forestry Legislation, the Agreement Holder is authorized to cut and Remove timber from the areas of lands within the Agreement Area that are designated on the map attached as Exhibit "A" to this Cutting Permit.
- 1.02 Subject to the Agreement, the term of this Cutting Permit is **four (4)** years, beginning on the date signed by the District Manager (See Page 3).

2.00 SPECIAL CONDITIONS AND REQUIREMENTS

2.01 The Agreement Holder must comply with the conditions and requirements set out in Schedule "A" to this Cutting Permit.

3.00 TIMBER REMOVED AND WASTE ASSESSMENT

3.01 The timber described in Schedule "B" is specified as reserved timber and the Agreement Holder must not fell standing timber, and must not buck or remove felled or dead and down timber, as the case may be, of the species and description set out in Schedule "B".

4.00 TIMBER MARKS

4.01 The timber mark(s) for timber Removed from land identified as Schedule B Land in the Agreement under this Cutting Permit is/are:

K2D 010

- 4.02 The timber mark for timber Removed from land identified as Schedule A Land in the Agreement under this Cutting Permit is/are: **Not Applicable**
- 4.03 If directed to do so by the District Manager, the Agreement Holder must erect signs at all exits from the areas of land referred to in paragraph 1.01, clearly showing the timber mark(s) referred to in paragraphs 4.01 and 4.02.

5.00 SCALE-BASED STUMPAGE

- 5.01 The Agreement Holder must ensure that
 - (a) all timber Removed from the areas of land referred to in paragraph 1.01 is scaled, and
 - (b) the scale of the timber is conducted properly in accordance with the requirements of the *Forest Act* and the regulations made under that Act.
- 5.02 For the purpose of determining the amount of stumpage payable in respect of timber Removed from the areas of Schedule B Land in the Agreement, authorized for cutting and Removal under this Cutting Permit, the volume or quantity of timber Removed will be determined using information provided in a scale of the timber.

6.00 ROADS

Subject to the Agreement and the Forestry Legislation, the Agreement Holder may use, construct, modify, maintain or deactivate roads on the area covered by this Cutting Permit.

7.00 HARVESTING OPERATIONS

- **7.01** The Agreement Holder must ensure that
 - (a) all phases of timber cutting and Removal and related operations under or associated with this Cutting Permit are synchronized, and

K2D CP010 - Version 1.05.doc

- (b) all operations on one area designated for cutting and Removal of timber under this Cutting Permit is completed to the satisfaction of the District Manager before operations are commenced on another area.
- **7.02** The Agreement Holder must not erect or operate a sawmill or wood processing plant on an area of land referred to in paragraph 1.01 of this Cutting Permit.
- **7.03** The rights granted under this Cutting Permit are subject to other rights of use and occupation, and the Agreement Holder must not interfere with the exercise of those rights.
- **7.04** The Agreement Holder must not allow the manufacture of special forest products on the area of land described in paragraph 1.01 of this Cutting Permit, unless authorized to do so by the District Manager.

MISCELLANEOUS

- 8.01 The Schedules and Exhibit "A" to this Cutting Permit are deemed to be part of this Cutting Permit.
- 8.02 As provided in the Agreement, this Cutting Permit is deemed to be part of the Agreement.
- 8.03 The Agreement governs the interpretation of this Cutting Permit.

K2D CP010 - Version 1.05.doc March 19, 2014

SCHEDULE "A" SPECIAL CONDITIONS AND REQUIREMENTS

1.00 TIMING OF OPERATIONS

The Licensee must ensure that all phases of timber harvesting and related operations under or associated with this Cutting Permit are synchronized.

2.00 ORDERLY CONDITION

The Licensee shall, concurrently with harvesting operations, leave all areas in an orderly and sanitary condition.

3.00 DANGEROUS TREES

- 3.01 The Licensee may fell trees outside of the cutblock boundary(s) identified on the attached map as Exhibit "A", for the purposes of tree felling to eliminate a safety hazard, if the person conducting tree felling or rigging tail hold/anchor trees determines that the tree is a dangerous tree according to Work Safe BC regulations and it is within 50 metres beyond the cutting authority area.
- 3.02 No authorization is given to fell, damage, alter or utilize timber located outside of the boundaries of Crown land associated with Community Forest Licence K2D.

4.00 TIMBER MARKS

- 4.01 In reference to paragraph 4.03 of the Cutting Permit, the Licensee must erect timber mark signs at all exits from the area of land or at changes of timber marks within the area of land referred to in the Cutting Permit paragraph 1.01, clearly showing the appropriate timber marks.
- 4.02 Harvesting operations must be conducted in a manner ensuring the accurate application of timber marks to timber to the satisfaction of the District Manager.

5.00 OTHER OCCUPIERS OF LAND

The rights granted under this Permit are subject to other rights of use and occupation and the Licensee must not interfere with exercise of those rights.

SCHEDULE "B"

1.00 RESERVED TIMBER

1.01 The following timber is specified as reserved timber:

Cutblock	Description (size, etc.)
1 2	All sizes and grades of timber, whether fallen or standing, dead or alive, within areas shown as "Retention" on the 1:5,000 scale application "Exhibit A Map" for cutblocks 1 and 2 attached to this Cutting Permit are reserved from felling except if the person conducting tree felling or rigging tailhold/anchor trees determines that the tree represents a safety hazard according to Work Safe BC standards.
	All sizes and grades of timber, whether fallen or standing, dead or live, within areas shown as 70%, dispersed retention and on the 1:5,000 application 'Exhibit A Map" for cutblock 2 attached to this Cutting Permit are reserved timber except in the following circumstances:
	If the person conducting tree felling or rigging tailhold/anchor trees determines that a tree represents a safety hazard according to Work Safe BC standards. Unless otherwise reserved from removal or harvesting in the applicable forest stewardship plan, any felled safety hazard trees may be removed.
	Areas described as 70% dispersed timber is reserved to the extent necessary to achieve the post harvest stand structure as detailed in the attached table titled "Leave Tree Report".

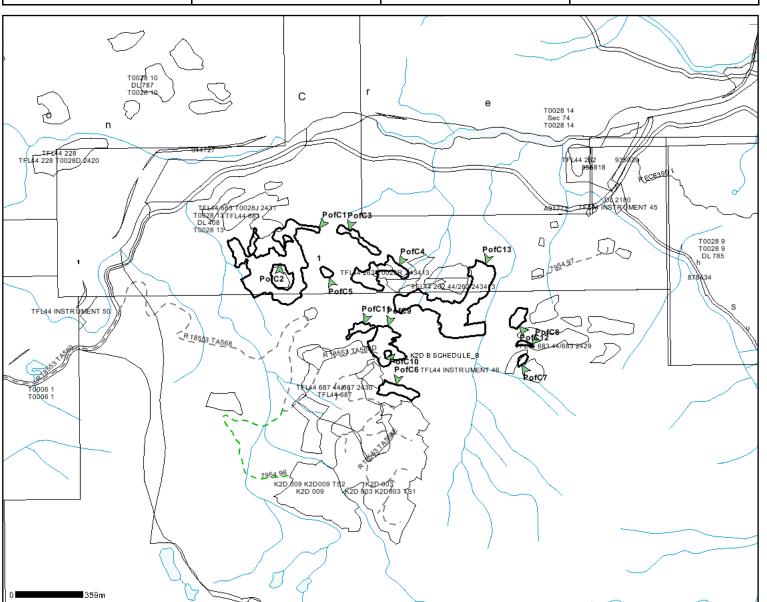
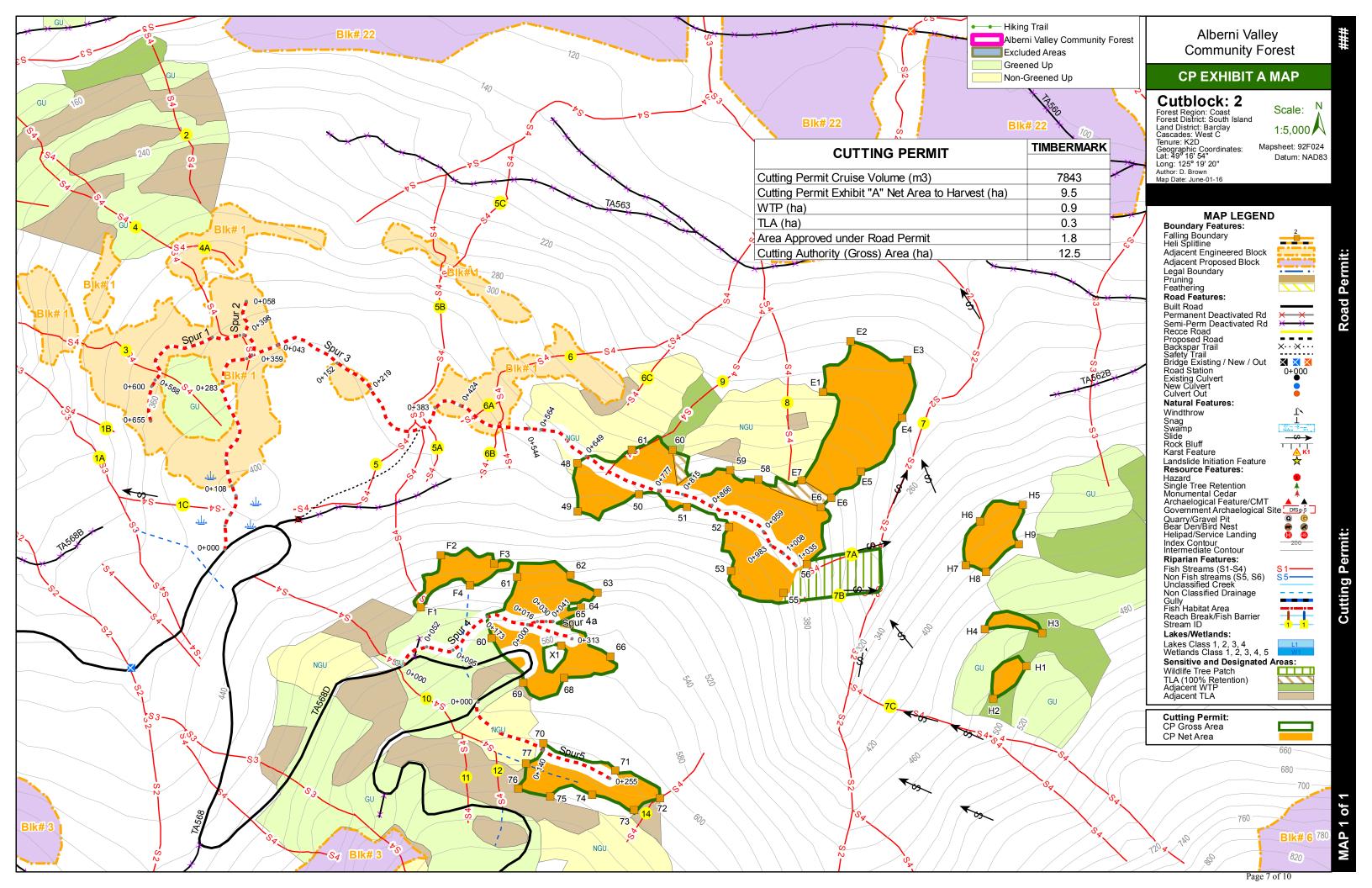
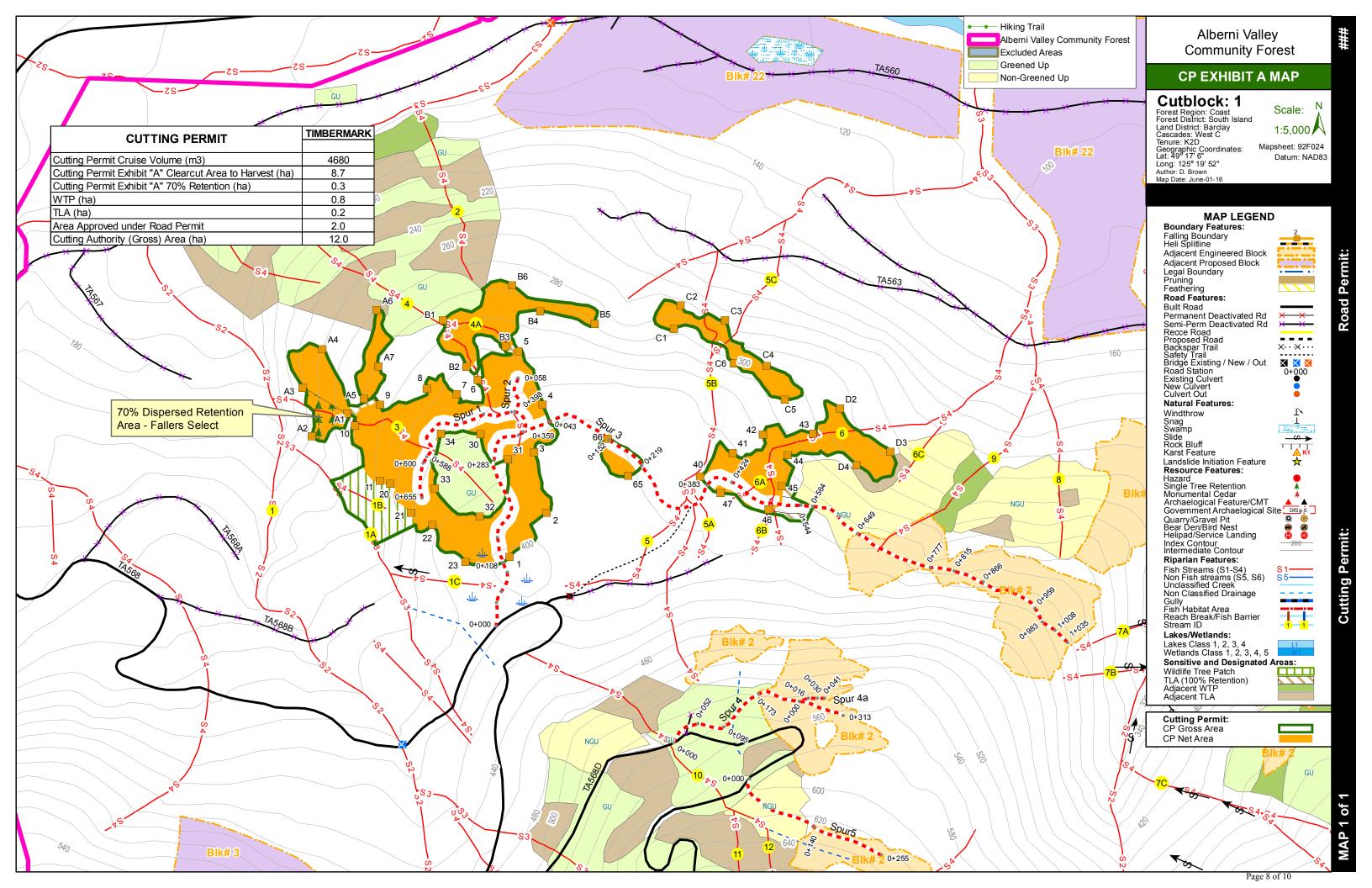


EXHIBIT A




MAP OF : K2D CP 010 (shown in bold black)							
FOREST REGION : RWC FOREST DISTRICT : DSI	TSA : 38 LAND DISTRICT : CLAYOQUOT DISTRICT	PULPWOOD AGREEMENT :	MGT UNIT TYPE : COMMUNITY FOREST MGT UNIT NO :				
ESF SUBMISSION ID : 1476124 BCGS MAPSHEET NO : 92F.024	SCALE : 1:20000 at A Size Area (Ha): 24.539	UTM : 10 NAD : NAD 83	DRAWN BY : FTA DATE : Jan 8, 2016				

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

$\texttt{L} \ \texttt{E} \ \texttt{A} \ \texttt{V} \ \texttt{E} \qquad \texttt{T} \ \texttt{R} \ \texttt{E} \ \texttt{E} \qquad \texttt{R} \ \texttt{E} \ \texttt{P} \ \texttt{O} \ \texttt{R} \ \texttt{T}$

Type Stand Table (stems/ha)

FIZ: B

Grades: MOF Computerized

Computerized Breakage

Computerized Decay PSYU: Nootka Computerized Waste

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Filename: comm_for_blk1_leave_tree_report

08-Jan-2016 07:42:31AM

TSTND- 3 , p4

Version: 2015.00 IFS build 5947

Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [70% Leave : 0.3]

ype I (M	1) · CF (H) S	951, PIOLS	in Type.	9, 10S.	. /U% Leav	/e · 0.3	1				
		F	C	Н	В	Y	PW	Total	DP	DU	LU
	n Limits	15.5	15 5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Min DBH	cm (M)	17.5 30.0									
Stump Ht Cop Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
op Dia og Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
BH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
ass											
5											
10											
15											
20											59.
25											
30			19.2	24.3				43.6			
35			15.6					15.6			
40				26.3		13.5		39.8			
45				31.4				31.4			
50		7.4	15.7	7.4				30.6			
55		6.8	6.4	6.5				19.6			
60			16.1	5.5				21.6			
65			13.3					13.3			
70		4.2	4.3					8.5			
75											
80		6.3						6.3			
85			2.9					2.9			
90		2.6						2.6			
95		4.4	2.2	2.2				8.9			
100		1.9						1.9			
105		1.9	2 4					1.9			
110		5.0	3.4					8.5			
115 120											
125											
130											
135											
140		1.1						1.1			
145											
150											
175											
200											
225											
250											
275											
otal		41.6	99.3	103.7		13.5		258.1			
ead P											
ead U											
lve U				59.9							59.
				rage DBH(d	cm) at 5 I						
2.5 +		82.1	56.8	44.0		38.5		56.4			18.
7.5 +		82.1	56.8	44.0		38.5		56.4			18.
2.5 +		82.1	56.8	44.0		38.5		56.4			
7.5 +		82.1	56.8	44.0		38.5		56.4			
2.5 +		82.1	61.3	47.7		38.5		60.4			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Leave Tree Report, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

 $\texttt{L} \ \texttt{E} \ \texttt{A} \ \texttt{V} \ \texttt{E} \qquad \texttt{T} \ \texttt{R} \ \texttt{E} \ \texttt{E} \qquad \texttt{R} \ \texttt{E} \ \texttt{P} \ \texttt{O} \ \texttt{R} \ \texttt{T}$

Type Stock Table (m3/ha) FIZ: B

Grades: MOF Computerized Computerized Decay

PSYU: Nootka Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

08-Jan-2016 07:42:31AM

Filename: comm_for_blk1_leave_tree_report

Compiled by: F Warren and Associates Ltd

TSTCK- 3 , p13

Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [70% Leave : 0.3]

Type I (M	1) • C1 (11)	JJI, FIOUS	III IYPC	J, 105.	[700 Eca	vc · 0.5	,				
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15 20											
25											
30			4.3	8.5				12.9			
35			4.3	0.5				4.3			
40			1.5	29.2		9.4		38.6			
45				47.7		,		47.7			
50		13.7	18.1	15.9				47.7			
55		14.5	7.3	16.8				38.6			
60			20.9	19.5				40.4			
65			22.1					22.1			
70		18.0	7.1					25.2			
75											
80		26.8						26.8			
85 90		14.5	6.9					6.9			
95		34.7	9.6	20.1				14.5 64.4			
100		15.4	9.0	20.1				15.4			
105		13.4						13.4			
110		43.9	17.2					61.1			
115											
120											
125											
130											
135											
140		18.3						18.3			
145											
150 175											
200											
225											
250											
275											
Total		213.2	117.8	157.7		9.4		498.2			
Dead P											
				al Volume	es for 7 L						
17.5 +		213.2	117.8	157.7		9.4		498.2			
22.5 +		213.2	117.8	157.7		9.4		498.2			
27.5 +		213.2	117.8	157.7		9.4		498.2			
32.5 +		213.2	113.5	149.2		9.4		485.4			
37.5 + 42.5 +		213.2 213.2	109.2 109.2	149.2		9.4		481.1 442.4			
42.5 + 47.5 +		213.2	109.2	120.0 72.3				394.8			
11.5 T		213.2	109.2	14.3				334.0			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Leave Tree Report, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

File: 11400-25, R18553, Amendment #11

Alberni Valley Community Forest Corporation 7500 Airport Road Port Alberni, British Columbia V9Y 8Y9

Dear Sir/Madam:

Reference is made to your application dated January 4, 2016, for an amendment of Road Permit (RP) No. R18553 within Alberni Valley Community Forest Licence K2D.

Pursuant to paragraph 1.01 and 2.01 of RP No. R18553, the roads identified in the list below, and the attached map shall form an integral part of the document for RP No. R18553 and should be attached thereto.

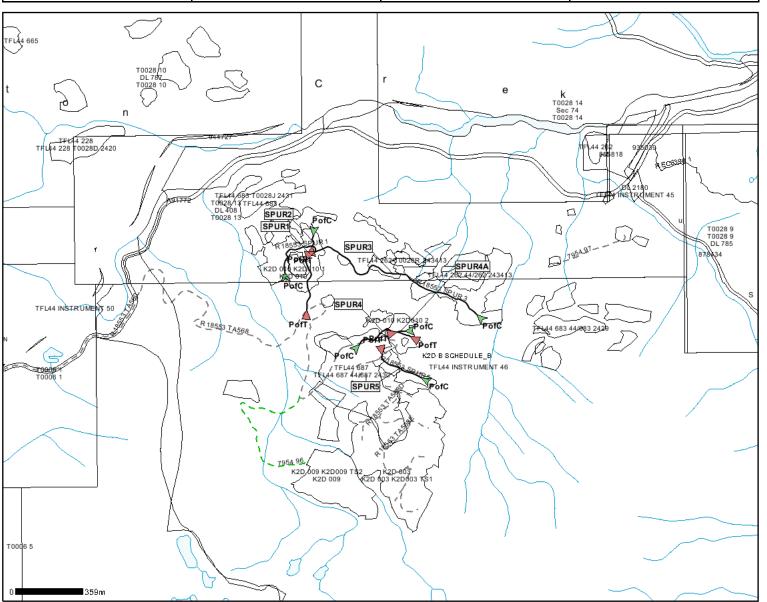
This amendment pertains to the construction, maintenance and use of the following roads within the *Alberni Valley Community Forest Corporation 2011 to 2016 Forest Stewardship Plan approved June 6, 2011:*

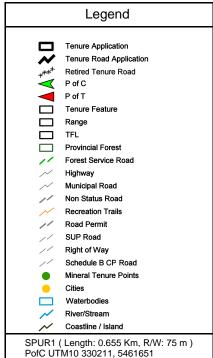
Licensee	Sec. Designation	Station(from)	Station(to)
Road Name	on Exhibit A Map		
Spur 1	Spur 1	0+000	0+655
Spur 2	Spur 2	0+000	0+058
Spur 3	Spur 3	0+000	1+035
Spur 4	Spur 4	0+000	0+313
Spur 4a	Spur 4a	0+000	0+041
Spur 5	Spur 5	0+000	0+255

All operations are to conform to the *Forest and Range Practices Act*. The Forest Road Engineering Guidebook may be used to assist achieving compliance with the Act.

Yours	trul	ly,
-------	------	-----

Attachment: Exhibit A Map (ESF 1476127)




EXHIBIT A

MAP OF: R18553 Amendment # 11 (show	MAP OF : R18553 Amendment # 11 (shown in bold black)										
FOREST REGION : RWC FOREST DISTRICT : DSI	TSA: LAND DISTRICT: CLAYOQUOT DISTRICT		MGT UNIT TYPE : COMMUNITY FOREST MGT UNIT NO :								
ESF SUBMISSION ID : 1476127 BCGS MAPSHEET NO : 92F.024	SCALE : 1:20000 at A Size Length (Km): 2.357	UTM : 10 NAD : NAD83	DRAWN BY : FTA DATE : Jan 11, 2016								

PofT UTM10 330320, 5461444 SPUR2 (Length: 0.0576 Km, R/W: 75 m) PofC UTM10 330369, 5461833 PofT UTM10 330363, 5461781 SPUR3 (Length: 1.0353 Km, R/W: 75 m) PofC UTM10 331216, 5461383 PofT UTM10 330375, 5461749 SPUR4 (Length: 0.3127 Km, R/W: 75 m) PofC UTM10 330591, 5461250 PofT UTM10 330859, 5461282 SPUR4A (Length: 0.041 Km, R/W: 75 m) PofC UTM10 330831, 5461310 PofT UTM10 330791, 5461307 SPUR5 (Length: 0.2551 Km, R/W: 75 m) PofC UTM10 330910, 5461060 PofT UTM10 330708, 5461188

AVCF

COMM - CP# PRE

Block #: Block 1

SUMMARY OF VOLUMES (loss factors)
FULL VOLUMES APPLIED

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Map Area Statement Report

28-Sep-2015 07:24:47PM

Average Line Method Grades: MOF Computerized AVCF Computerized Decay

: Prop./Mngd.PSYU,TFL,or SSA

: South Island

: Nootka

: 1

: 0

FIZ: B PSYU: Nootka Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

MAS- 1 , p2

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Card A Cruise Identity

Forest District

: COMM Cutting Permit # : PRE Licence # Number of Blocks : 1

Forest Region : West Coast

Type : PSYU

Tenure : Community Forest Agreement

Sale Type : None Co-ordinates Zone : Unknown

North

Total Merch Area : 12.30 : *** FOR APPRAISAL PURPOSES *** Report Type

Locality

Unit No

Quota Elevation

East

Card B Compilation Standard

: Compile All Trees Damage : Damage Selective Double Sampling : Measure Plots Only Special Compilation : No Special Compilation

Species Compilation : Exceptions Not Used Type of Compilation : Coastal

Compilation Standard Mature Immature 12.00 DBH Limit 17.50 Stump Height 30 30 Top Diameter 15.00 10.00

Card C Type Description

Silvicultural Treatment Units Type Description Α 4.7 CF (H) 951 2 FH (C) 841 6.2 0.4 3 F (P) 831 0.3 0.7

Card D Block Description

Block	Description	Maturity	Type	А	Silvicultural Treatment Units B
001	Block 1	М	1	4.7	
			2 3	6.2 0.3	0.4 0.7

Cond E Homeostine Desemintion

	rvesting Description			
Harvest	Harvest			Silvicultural Treatment Units
Method	Description	Type	A	В
CC	Cable - Clearcut	1	1.1	
		2	4.1	
HL	Heli - Land	1	3.6	
		2	0.4	
SC	Ground Systems - Clearcut	2	1.7	0.4
	-	3	0.3	0.7

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Map Area Statement Report

FIZ: B

PSYU: Nootka

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Average Line Method

Project: AVCF_NOVA

AVCF

Licence Number: COMM CP: PRE

Computerized Decay
Computerized Waste

Grades: MOF Computerized

Computerized Waste
Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

MAS- 2 , p3

Version: 2015.00 IFS build 5947

Card G Treatment Unit Description

Treatment Unit Description

A Block
B RW outside

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Appraisal Summary Report

28-Sep-2015 07:24:47PM

Average Line Method Grades: MOF Computerized AVCF Computerized Decay

FIZ: B PSYU: Nootka Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

APPSM-1, p4

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

No Of Blocks : 1

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 30 Immature Blocks: (cm) 12.0 10.0 30

Standard Log Length:(m) 10.00

Net Area: [All Treatment Units : 12.3]

All Method Summary Algorithm Grades %

Location :

AIG	orithm Grades &														
5	Species	D	F	H	I	J	U	X	Y]	Net Volume	(m3)	I.	Net Volume /	/ ha
Code	e Description									All	Live	DP	All	Live	DP
BA	Balsam					100				96	96	0	7.836	7.836	0.000
CE	Cedar			41		23	31	4	1	1002	1002	0	81.485	81.485	0.000
CY	Y. Cedar					97		3		224	63	160	18.192	5.157	13.036
FI	Doug-Fir	2	7	34	8	12	32	3	2	2952	2952	0	240.027	240.027	0.000
HE	Hemlock			17	11	54	15	3		1689	1667	22	137.334	135.540	1.794
WH	W.W. Pine					100				50	50	0	4.088	4.088	0.000
	Total									6014	5832	182	488.963	474.133	14.830

Harvesting Method Summaries

Harvest Method	Net Volume	Net Vol /10m Log	Net Vol /Hectare	Hem+ Bal%	Partial Cut%	Slope%	Down Tree%	Heavy Fire%
CC	2281	0.77	438.676	30		50	0	0
HL	2709	0.86	677.140	32		64	0	0
SC	1025	0.73	330.504	25		25	0	0
Conventional Methods	3306	0.75	398.275	28		40	0	0
All Methods	6014	0.80	488.963	30			0	0

utting Authority

(Cutting Authority								
	95% Confidence Interval	25.5							
	Plots/Ha	1.3							
	Cruised Trees/Plot	5.1							
	Net 2nd Growth-Conifer %	0.0							
	Net 2nd Growth-Conifer (m3)	0							
	Net Immature by Block %	001: 0%							
	Non Heli Select Conifer (m3/ha)	488.96							
	Heli Select Total (decimal)	0.00							
	Heli+Skyline Total (decimal)	0.45							
	Piece Size - Conifer (m3/10m log)	0.80							
	Cruise Date (yy-mm):	15-09							
	# Plots: 16 # <= 5vrs: 16	# > 5yrs:	0	# >	10yrs:	0	# n	o date:	0

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Volume Statistical Analysis

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

VLS- 1 , p5

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 30 Immature Blocks:(cm) 12.0 10.0

Standard Log Length:(m) 10.00

Forest	Plots	Area	Net Volume	Proportional	Trees	Standard	Coeff. of	Sampling	Error
Type	Cnt Mea Tot	ha	m3/ha	Volume	Cnt Mea T	Tot Deviation	Variation	1 SE%	2 SE%
1 :CF (H) 951 2 :FH (C) 841 3 :F (P) 831 TOTAL	0 9 9 0 6 6 0 1 1 0 16 16	4.7 6.6 1.0 12.3	711.8 365.4 257.2 489.0	0.56 0.40 0.04	0 33	41 346.3424 33 169.9655 7 0.0000 81	48.7 46.5 47.2	16.2 19.0 0.0 11.8	37.4 48.8 0.0 25.5

Number of live & dead potential trees sampled is 81

Number of dead useless trees sampled is 0

Number of live useless trees sampled is 1

The weighted sampling error is 25.5% at the 95% confidence level

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Basal Area Statistical Analysis

Grades: MOF Computerized FIZ: B

Computerized Decay Computerized Waste

Computerized Breakage

PSYU: Nootka Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

BAS- 1 , p6

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 30 Immature Blocks:(cm) 12.0 10.0

Standard Log Length:(m) 10.00

Forest	Plots	Area	Basal Area	Proportional	Trees	Standard	Coeff. of	Sampling Error
Type	Cnt Mea Tot	ha	m2/ha	Basal Area	Cnt Mea Tot	Deviation	Variation	1 SE% 2 SE%
1 :CF (H) 951 2 :FH (C) 841 3 :F (P) 831 TOTAL	0 9 9 0 6 6 0 1 1 0 16 16	4.7 6.6 1.0 12.3	92.3 49.5 43.8 65.4	0.54 0.41 0.05	0 41 41 0 33 33 0 7 7 0 81 81	43.0891 18.6628 0.0000	46.7 37.7 41.9	15.6 35.9 15.4 39.6 0.0 0.0 10.5 22.6

Number of live & dead potential trees sampled is 81

Number of dead useless trees sampled is 0

Number of live useless trees sampled is 1

The weighted sampling error is 22.6% at the 95% confidence level

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

All Method Summary

FIZ: B

28-Sep-2015 07:24:47PM

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Breakage

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

AHV- 1 , p7

PSYU: Nootka Computerized Waste Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

[All Treatment Units : 12.3]

Licence Number: COMM CP: PRE

Stump Ht cm (M) 30.0 15.0 15.0 15.0 10.0	30.0 15.0 10.0 267 224 .192 4.157	17.5 30.0 15.0 10.0
Net Merch - All m3/ha 488.963 488.963 240.027 81.485 137.334 7.836 18 Net Merch - Live m3/ha 474.133 474.133 240.027 81.485 135.540 7.836 5	.192 4. .157 4.	1.088
	.036	1.088
Decay % 9 9 4 27 2 2 Waste(billing) % 4 4 1 18 0 1 Total Cull (DWB) % 18 18 10 44 8 8	9 0 16	1 6
		0.86
Net Second Growth %		
All Burn Volume % Heavy Fire Volume % Blowdown Volume % Insect Volume %		

Algorithm Grades %

#1 Lum/#1 Prem D 1 1 2					
#2 Lum/#1 Lum F 3 3 7					
#2 Sawlog H 28 28 34	41	17			
#3 Sawlog I 7 7 8		11			
#4 Sawlog J 32 32 12	23	54	100	97	100
#5 Utility U 25 25 32	31	15			
#6 Utility X 3 3	4	3		3	
#7 Chipper Y 1 1 2	1				

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

All Method Summary FIZ: B

PSYU: Nootka

28-Sep-2015 07:24:47PM

Average Line Method

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

AHV- 2 , p8

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH Version: 2015.00 IFS build 5947

[Block : 11.2]

		m-+-1	G ! E	D1-1		9			77	Dia
**************************************		Total	Conifer	Decid	F	С	Н	В	Y	PW
Willization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Volume and Size Data										
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	6963 5688 507.860 492.561 15.299	6963 5688 507.860 492.561 15.299		3046 2747 245.241 245.241	1774 989 88.346 88.346	1773 1632 145.730 143.879 1.851	98 91 8.084 8.084	255 214 19.111 5.663 13.448	16 15 1.347 1.347
Deser	8	0	9		4	27	2	2	9	1
Decay Waste(billing)	%	9 4	4		4 1	19	2	2 1	0	1
Total Cull (DWB)	%	18	18		10	44	8	8	16	6
Net Merch Vol/Tree	m3	1.57	1.57		3.65	0.97	1.09	1.17	0.85	0.86
Avg 10.0 m Log Net	m3	0.80	0.80		1.29	0.58	0.64	0.62	0.46	0.45
Useless Dead/Living	%	10	10				21			
Net Second Growth	%									
All Burn Volume	용									
Heavy Fire Volume	ક									
Blowdown Volume	용									
Insect Volume	용									
Algorithm Grades %										
#1 Lum/#1 Prem	D	1	1		2					

:	#1 Lum/#1 Prem	D	1	1	2					
:	#2 Lum/#1 Lum	F	4	4	8					
:	#2 Sawlog	H	29	29	34	43	17			
:	#3 Sawlog	I	7	7	9		11			
	#4 Sawlog	J	30	30	12	23	54	100	96	100
:	#5 Utility	U	24	24	29	30	15			
:	#6 Utility	X	3	3	3	3	3		4	
	#7 Chipper	Y	2	2	3	1				

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

All Method Summary

FIZ: B

PSYU: Nootka

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Average Line Method

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Version: 2015.00 IFS build 5947

AHV- 3 , p9

Licence Number: COMM CP: PRE
Project: AVCF_NOVA

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

[RW outside : 1.1]

		Total	Conifer	Decid	F	С	H	В	Y	PW
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	362 326 296.555 286.505 10.050	362 326 296.555 286.505 10.050		222 206 186.936 186.936	22 13 11.625 11.625	63 57 51.850 50.634 1.216	6 6 5.311 5.311	12 10 8.834 8.834	38 35 32.000 32.000
Decay Waste(billing) Total Cull (DWB)	00 00 00	4 1 10	4 1 10		2 0 7	24 16 41	3 1 10	2 1 8	9 0 16	1 6
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	1.14	1.14 0.73		1.96 1.07	0.55 0.41	0.56 0.50	1.17 0.62	0.94 0.51	0.86
Net Second Growth	8									
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	olo olo olo									

Algorithm Grades %

#2 Sawlog	H	13	13	15	38	7			
#3 Sawlog	I	4	4	4		7			
#4 Sawlog	J	37	37	13	11	73	100	100	100
#5 Utility	U	45	45	68	37	11			
#6 Utility	X	1	1		14	2			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

HV- 1 , p10

Average Line Method

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage FIZ: B PSYU: Nootka

Harvest Method Summary

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Harvest Method : CC - Cable - Clearcut [All Treatment Units : 5.2]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	2721 2281 438.676 416.886 21.791	2721 2281 438.676 416.886 21.791		1283 1169 224.889 224.889	558 316 60.820 60.820	679 621 119.443 116.807 2.636	65 60 11.515 11.515	137 114 22.009 2.855 19.155	
Decay Waste(billing) Total Cull (DWB)	00 00 00	8 3 16	8 3 16		3 1 9	26 18 43	2 1 9	2 1 8	9 0 16	
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	1.42 0.77 6	1.42 0.77 6		3.28 1.19	0.80 0.52	0.91 0.60 12	1.17 0.62	0.90 0.49	
Net Second Growth	%									
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume % Average Slope	00 00 00 00	50								
Algorithm Grades %		30								
#1 Lum/#1 Prem #2 Lum/#1 Lum #2 Sawlog #3 Sawlog	D F H I	1 2 29 8	1 2 29 8		1 4 38 9	41	15 11			
#4 Sawlog #5 Utility #6 Utility #7 Chipper	J U X Y	30 26 3 1	30 26 3 1		12 33 2 1	20 32 6 1	55 16 3	100	98 2	

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

HV- 2 , p11

Harvest Method Summary Average Line Method

Grades: MOF Computerized Computerized Decay

Computerized Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947 District: 04 - South Island

Harvest Method : HL - Heli - Land [All Treatment Units : 4.0]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha		3445 2709 677.140 674.376 2.764		1332 1178 294.523 294.523	1124 619 154.716 154.716	913 847 211.866 211.531 0.334	6 6 1.460 1.460	70 58 14.575 12.146 2.429	
Decay Waste(billing) Total Cull (DWB)	alo alo alo	11 5 21	11 5 21		5 2 12	27 19 45	1 0 7	2 1 8	9 0 16	
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	1.87 0.86 18	1.87 0.86 18		4.86 1.50	1.16	1.45 0.71 35	1.17 0.62	0.73	
Net Second Growth	%									
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume % Average Slope	00 00 00 00	64								
Algorithm Grades %										
#1 Lum/#1 Prem #2 Lum/#1 Lum #2 Sawlog #3 Sawlog	D F H I	1 6 30 7	1 6 30 7		3 14 33 8	43	20 11			
#4 Sawlog #5 Utility #6 Utility #7 Chipper	J U X Y	30 20 3 3	30 20 3 3		13 20 4 5	26 29 1 1	52 14 2 1	100	90 10	

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

HV- 3 , p12

Average Line Method

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage FIZ: B PSYU: Nootka

Harvest Method Summary

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Harvest Method : SC - Ground Systems - Clearcut[All Treatment Units : 3.1]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data	1	1150	1150		653	110	0.4.4	2.2	C1	Ε 4
Gross Merchantable Net Merchantable	m3 m3	1158 1025	1158 1025		653 605	113 67	244 221	33 31	61 51	54 50
Net Merchantable Net Merch - All	m3/ha	330.504	330.504		195.100		71.176	9.893	16.457	16.221
Net Merch - All	m3/ha	311.782	330.504		195.100	21.657 21.657	68.911	9.893	10.45/	16.221
Net Merch - DP	m3/ha	18.722	18.722		195.100	21.057	2.265	9.093	16.457	10.221
Net Merch - DP	1113/11a	10./22	10.722				2.205		10.457	
Decay	8	5	5		2	24	3	2	9	1
Waste(billing)	8	1	1		0	16	1	1	0	_
Total Cull (DWB)	8	12	12		7	41	10	8	16	6
rocar carr (DWB)	0	12	12		,		10	O	10	O
Net Merch Vol/Tree	m3	1.20	1.20		2.34	0.55	0.65	1.17	0.94	0.86
Avg 10.0 m Log Net	m3	0.73	0.73		1.08	0.41	0.53	0.62	0.51	0.45
Useless Dead/Living	용									
Net Second Growth	용									
All Burn Volume	용									
Heavy Fire Volume	%									
Blowdown Volume	용									
Insect Volume	용									
% Average Slope		25								
33										
Algorithm Grades %	TT	21	21		28	38	10			
#2 Sawlog #3 Sawlog	H I	6	21 6		28 7	38	10			
#4 Sawlog	J	34	34		12	11	62	100	100	100
#5 Utility	U	37	37		52	37	15	100	100	100
#6 Utility	X	2	2		1	14	3			
#O OCITICA	Λ	۷	2			14	3			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

HV- 4 , p13

Conder Mor Computation

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Harvest Method Summary

Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

Harvest Method : SC - Ground Systems - Clearcut[Block : 2.0]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	796 698 349.176 325.685 23.491	796 698 349.176 325.685 23.491		432 399 199.591 199.591	92 54 27.174 27.174	181 164 81.806 78.964 2.842	27 25 12.414 12.414	49 41 20.650 20.650	16 15 7.543 7.543
Decay Waste(billing) Total Cull (DWB)	00 00 00	5 2 12	5 2 12		2 0 7	24 16 41	3 1 10	2 1 8	9 0 16	1 6
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	1.22	1.22 0.72		2.60 1.08	0.55 0.41	0.69 0.54	1.17 0.62	0.94 0.51	0.86
Net Second Growth	%									
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	00 00 00									

Algorithm Grades %

#2 Sawlog	H	25	25	34	38	11			
#3 Sawlog	I	8	8	9		11			
#4 Sawlog	J	33	33	12	11	58	100	100	100
#5 Utility	U	32	32	44	37	17			
#6 Utility	X	2	2	1	14	3			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Harvest Method Summary

PSYU: Nootka

zed FIZ: B

Grades: MOF Computerized
Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

HV- 5 , p14

Harvest Method : SC - Ground Systems - Clearcut[RW outside : 1.1]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	362 326 296.555 286.505 10.050	362 326 296.555 286.505 10.050		222 206 186.936 186.936	22 13 11.625 11.625	63 57 51.850 50.634 1.216	6 6 5.311 5.311	12 10 8.834 8.834	38 35 32.000 32.000
Decay Waste(billing) Total Cull (DWB)	00 00 00	4 1 10	4 1 10		2 0 7	24 16 41	3 1 10	2 1 8	9 0 16	1 6
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	1.14	1.14 0.73		1.96 1.07	0.55 0.41	0.56 0.50	1.17 0.62	0.94 0.51	0.86 0.45
Net Second Growth	%									
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	olo olo olo									

Algorithm Grades %

#2 Sawlog	H	13	13	15	38	7			
#3 Sawlog	I	4	4	4		7			
#4 Sawlog	J	37	37	13	11	73	100	100	100
#5 Utility	U	45	45	68	37	11			
#6 IItility	X	1	1		14	2			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

Cutting Permit Summary

Grades: MOF Computerized

Average Line Method Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

FIZ: B

PSYU: Nootka

Net Area: [All Treatment Units : 12.3] Gross Area: [Grand Total : 12.3]

Utilization Limits Min DBH cm (M) Stump Ht cm (M)									
Stump Ht cm (M)									
_ ,				17.5	17.5	17.5	17.5	17.5	17.5
				30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)				15.0	15.0	15.0	15.0	15.0	15.0
Log Len m				10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	7324	7324	3268	1795	1836	104	267	54
Net Merchantable	m3	6014	6014	2952	1002	1689	96	224	50
Net Merch - All	m3/ha	489	489	240	81	137	8	18	4
Distribution	8	100	100	49	17	28	2	4	1
Decay	8	9	9	4	27	2	2	9	1
Waste	8	3	3	1	10	0	1	0	
Waste(billing)	%	4	4	1	18	0	1	0	
Breakage	용	6	6	5	7	6	5	7	5
Total Cull (DWB)	8	18	18	10	44	8	8	16	6
Stems/Ha (Live & DP)		317.7	317.7	69.7	85.2	130.1	6.7	21.2	4.8
Avg DBH (Live & DP)	cm	51.2	51.2	71.9	51.5	39.0	39.1	38.5	36.9
Snags/Ha		32.7	32.7			32.7			
Avg Snag DBH	cm	18.3	18.3			18.3			
Gross Merch Vol/Tree	m3	1.87	1.87	3.81	1.71	1.15	1.27	1.02	0.92
Net Merch Vol/Tree	m3	1.54	1.54	3.44	0.96	1.06	1.17	0.86	0.86
Avg Weight Total Ht	m	31.2	31.2	34.7	29.2	28.8	25.9	23.5	22.5
Avg Weight Merch Ht	m	25.6	25.6	29.8	23.0	22.1	19.3	16.9	16.1
Avg 10.0 m Log Net	m3	0.80	0.80	1.27	0.57	0.64	0.62	0.46	0.45
Avg 10.0 m Log Gross		0.91	0.91	1.33	0.91	0.65	0.63	0.51	0.46
Avg # of 10.0 m Logs		2.06	2.06	2.87	1.88	1.76	2.00	2.00	2.00
Net Immature	용								
Net 2nd Growth	용								
Average Slope	용	51							
Algorithm Grades %									
#1 Lum/#1 Prem	D	1	1	2					
#2 Lum/#1 Lum	F	3	3	7					
#2 Sawlog	H	28	28	34	41	17			
#3 Sawlog	I	7	7	8		11			
#4 Sawlog	J	32	32	12	23	54	100	97	100
#5 Utility	U	25	25	32	31	15			
#6 Utility	X	3	3	3	4	3		3	
#7 Chipper	Y	1	1	2	1				
Statistical Summary									
Coeff. of Variation	8	47.2	47.2	87.3	106.6	113.5	400.0	308.2	
Two Standard Error	8	25.5	25.5	47.1	57.6	61.3	216.0	166.4	
Number and Type of P	lots	MP = 1	6						
Number of Potential	Trees	81							
Plots/Ha		1.3							
Cruised Trees/Plot		5.1							

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

CP- 1 , p15

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

CP- 2 , p16

Average Line Method Grades: MOF Computerized

Computerized Decay
Computerized Waste
Computerized Breakage

Cutting Permit Summary
FIZ: B
PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:24:47PM
Filename: comm_for_blk1_typed_lf.ccp
Compiled by: F Warren and Associates Ltd
Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: [Block : 11.2]

Project: AVCF_NOVA

		Total	Conifer	Decid	F	С	Н	В	Y	PV
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.
Log Len m					10.0	10.0	10.0	10.0	10.0	10.
Olume and Size Data										
Gross Merchantable	m3	6963	6963		3046	1774	1773	98	255	1
Net Merchantable	m3	5688	5688		2747	989	1632	91	214	1
Net Merch - All	m3/ha	508	508		245	88	146	8	19	
Distribution	ક	100	100		48	17	29	2	4	
Decay	%	9	9		4	27	2	2	9	
Waste	8	3	3		1	10	0	1	0	
Waste(billing)	%	4	4		1	19	0	1	0	
Breakage	%	6	6		- 5	7	6	5	7	
Total Cull (DWB)	8	18	18		10	44	8	8	16	
Stems/Ha (Live & DP)	~	323.4	323.4		67.2	91.5	133.9	6.9	22.4	1.
Avg DBH (Live & DP)		51.5	51.5		73.1	51.8	39.3	39.1	38.5	36.
Snags/Ha	Citi	35.9	35.9		73.1	31.0	35.9	39.1	30.3	30.
Avg Snag DBH	am	18.3	18.3				18.3			
	CM				4 0 5	1 72		1 07	1 00	0.9
Gross Merch Vol/Tree		1.92	1.92		4.05	1.73	1.18	1.27	1.02	
Net Merch Vol/Tree	m3	1.57	1.57		3.65	0.97	1.09	1.17	0.85	0.8
Avg Weight Total Ht	m	31.5	31.5		35.4	29.2	29.0	25.9	23.4	22.
Avg Weight Merch Ht	m	25.9	25.9		30.4	23.0	22.3	19.3	16.8	16.
Avg 10.0 m Log Net	m3	0.80	0.80		1.29	0.58	0.64	0.62	0.46	0.4
Avg 10.0 m Log Gross		0.92	0.92		1.35	0.92	0.66	0.63	0.51	0.4
Avg # of 10.0 m Logs		2.09	2.09		3.00	1.89	1.80	2.00	2.00	2.0
Net Immature	%									
Net 2nd Growth	%									
Average Slope	용	51								
Algorithm Grades %										
#1 Lum/#1 Prem	D	1	1		2					
#2 Lum/#1 Lum	F	4	4		8					
#2 Sawlog	Н	29	29		34	43	17			
#3 Sawlog	I	7	7		9		11			
#4 Sawlog	J	30	30		12	23	54	100	96	10
#5 Utility	ŢŢ	2.4	24		29	30	15			
#6 Utility	X	3	3		3	3	3		4	
#7 Chipper	Y	2	2		3	1	_		_	
Statistical Summary	-	_	-		3	_				
Coeff. of Variation	%	47.2	47.2		87.3	106.6	113.5	400.0	308.2	
Two Standard Error	8	25.5	25.5		47.1	57.6	61.3	216.0	166.4	
Number and Type of P			.6		4/.T	37.0	01.3	210.0	100.4	
Number of Potential		MP = 1 81	. 0							
Plots/Ha	itees	1.3								
Cruised Trees/Plot		5.1								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

CP- 3 , p17 28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Average Line Method Grades: MOF Computerized

Computerized Decay

PSYU: Nootka Computerized Waste Region: 2 - West Coast Computerized Breakage

Cutting Permit Summary

FIZ: B

District: 04 - South Island

Net Area: [RW outside : 1.1]

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

******		Total	Conifer	Decid	F	C	Н	В	Y	PW
Wtilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable	m3	362	362		222	22	63	6	12	38
Net Merchantable Net Merch - All	m3 m3/ha	326 297	326 297		206 187	13 12	57 52	6 5	10 9	35 32
Distribution	%	100	100		63	4	17	2	3	11
Decay	8	4	4		2	24	3	2	9	1
Waste	%	ī	1		0	10	1	0	0	_
Waste(billing)	8	1	1		0	16	1	1	0	
Breakage	8	5	5		5	7	6	5	7	5
Total Cull (DWB)	%	10	10		7	41	10	8	16	6
Stems/Ha (Live & DP)		259.6	259.6		95.4	21.0	92.1	4.5	9.4	37.2
Avg DBH (Live & DP) Snags/Ha	cm	47.4	47.4		62.4	40.7	34.0	39.1	38.5	36.9
Avg Snag DBH	cm									
Gross Merch Vol/Tree		1.27	1.27		2.11	0.93	0.62	1.27	1.12	0.92
Net Merch Vol/Tree	m3	1.14	1.14		1.96	0.55	0.56	1.17	0.94	0.86
Avg Weight Total Ht	m	24.6	24.6		25.3	26.4	22.4	25.9	25.3	22.5
Avg Weight Merch Ht	m	19.6	19.6		21.0	20.7	16.5	19.3	18.2	16.1
Avg 10.0 m Log Net	m3	0.73	0.73		1.07	0.41	0.50	0.62	0.51	0.45
Avg 10.0 m Log Gross Avg # of 10.0 m Logs Net Immature		0.77 1.65	0.77 1.65		1.10 1.92	0.61 1.52	0.52 1.21	0.63 2.00	0.56 2.00	0.46
Net 2nd Growth	%									
Average Slope	%	51								
Algorithm Grades %	· ·	31								
#2 Sawlog	Н	13	13		15	38	7			
#3 Sawlog	I	4	4		4	30	7			
#4 Sawlog	J	37	37		13	11	73	100	100	100
#5 Utility	IJ	45	45		68	37	11	200	100	200
#6 Utility	X	1	1			14	2			
Statistical Summary										
Coeff. of Variation	%	47.2	47.2		87.3	106.6	113.5	400.0	308.2	
Two Standard Error	%	25.5	25.5		47.1	57.6	61.3	216.0	166.4	
Number and Type of P	lots	MP = 1								
Number of Potential		81								
Plots/Ha		1.3								
Cruised Trees/Plot		5.1								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

BS- 1 , p18

Grades: MOF Computerized Average Line Method

Block Summary FIZ: B

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Project: AVCF_NOVA

Computerized Decay Computerized Waste Computerized Breakage

PSYU: Nootka Compiled by: F Warren and Associates Ltd Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Net Area: Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [All Treatment Units: 12.3]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	7324	7324		3268	1795	1836	104	267	54
Net Merchantable	m3	6014	6014		2952	1002	1689	96	224	50
Net Merch - All	m3/ha	489	489		240	81	137	8	18	4
Distribution	용	100	100		49	17	28	2	4	1
Decay	ક	9	9		4	27	2	2	9	1
Waste	용	3	3		1	10	0	1	0	
Waste(billing)	%	4	4		1	18	0	1	0	_
Breakage	8	6	6		5	7	6	5	7	5
Total Cull (DWB)	ક	18	18		10	44	8	8	16	6
Stems/Ha (Live & DP)		317.7	317.7		69.7	85.2	130.1	6.7	21.2	4.8
Avg DBH (Live & DP)	cm	51.2	51.2		71.9	51.5	39.0	39.1	38.5	36.9
Snags/Ha		32.7	32.7				32.7			
Avg Snag DBH	cm	18.3	18.3		2 01	1 81	18.3	1 05	1 00	0.00
Gross Merch Vol/Tree		1.87	1.87		3.81	1.71	1.15	1.27	1.02	0.92
Net Merch Vol/Tree	m3	1.54	1.54		3.44	0.96	1.06	1.17	0.86	0.86
Avg Weight Total Ht	m	31.2	31.2		34.7	29.2	28.8	25.9 19.3	23.5	22.5
Avg Weight Merch Ht	m m3	25.6 0.80	25.6 0.80		29.8 1.27	23.0 0.57	22.1 0.64	0.62	16.9 0.46	16.1 0.45
Avg 10.0 m Log Net Avg 10.0 m Log Gross		0.80	0.80		1.27	0.57	0.65	0.62	0.46	0.45
Avg # of 10.0 m Logs		2.06	2.06		2.87	1.88	1.76	2.00	2.00	2.00
Net Immature	%	2.00	2.00		2.07	1.00	1.70	2.00	2.00	2.00
Net 2nd Growth	%									
Average Slope	% %	51								
Algorithm Grades %	70	21								
#1 Lum/#1 Prem	D	1	1		2					
#2 Lum/#1 Lum	F	3	3		7					
#2 Sawlog	H	28	28		34	41	17			
#3 Sawlog	I	7	7		8		11			
#4 Sawlog	J	32	32		12	23	54	100	97	100
#5 Utility	IJ	25	25		32	31	15	200		200
#6 Utility	X	3	3		3	4	3		3	
#7 Chipper	Y	1	1		2	1				
Statistical Summary										
Coeff. of Variation	%	47.2	47.2		87.3	106.6	113.5	400.0	308.2	
Two Standard Error	%	25.5	25.5		47.1	57.6	61.3	216.0	166.4	
Number and Type of P	lots	MP =	16							
Number of Potential	Trees	81								
Plots/Ha		1.3								
Cruised Trees/Plot		5.1								
Slope % Statistics										

Min= 15, Max=102, CV=43.7, Std Error of Mean=5.9, 2SE%=23.3

BS-2, p19

Grades: MOF Computerized Average Line Method

Block Summary FIZ: B PSYU: Nootka

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

Computerized Decay Computerized Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Net Area: Block: (M) - 001:Block 1, Plots in Block: 16, TUS: [Block: 11.2]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits		IOCAI	CONTLCI	Decia	r	C	11	Б	_	T 11
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	6963	6963		3046	1774	1773	98	255	16
Net Merchantable	m3	5688	5688		2747	989	1632	91	214	15
Net Merch - All	m3/ha	508	508		245	88	146	8	19	1
Distribution	8	100	100		48	17	29	2	4	0
Decay	%	9	9		4	27 10	2 0	2 1	9 0	1
Waste Waste(billing)	% %	3 4	3 4		1 1	19	0	1	0	
Waste(DIIIIng) Breakage	%	6	6		5	7	6	5	7	5
Total Cull (DWB)	6 %	18	18		10	44	8	8	16	6
Stems/Ha (Live & DP)	-	323.4	323.4		67.2	91.5	133.9	6.9	22.4	1.6
Avg DBH (Live & DP)		51.5	51.5		73.1	51.8	39.3	39.1	38.5	36.9
Snags/Ha	0	35.9	35.9		, , , ,	31.0	35.9	37.1	30.3	30.5
Avg Snag DBH	cm	18.3	18.3				18.3			
Gross Merch Vol/Tree	m3	1.92	1.92		4.05	1.73	1.18	1.27	1.02	0.92
Net Merch Vol/Tree	m3	1.57	1.57		3.65	0.97	1.09	1.17	0.85	0.86
Avg Weight Total Ht	m	31.5	31.5		35.4	29.2	29.0	25.9	23.4	22.5
Avg Weight Merch Ht	m	25.9	25.9		30.4	23.0	22.3	19.3	16.8	16.1
Avg 10.0 m Log Net	m3	0.80	0.80		1.29	0.58	0.64	0.62	0.46	0.45
Avg 10.0 m Log Gross		0.92	0.92		1.35	0.92	0.66	0.63	0.51	0.46
Avg # of 10.0 m Logs		2.09	2.09		3.00	1.89	1.80	2.00	2.00	2.00
Net Immature	용									
Net 2nd Growth	8									
Average Slope	용	51								
Algorithm Grades %	D.	1	1		2					
#1 Lum/#1 Prem #2 Lum/#1 Lum	D F	1 4	1 4		2 8					
#2 Sawlog	r H	29	29		34	43	17			
#3 Sawlog	I	29 7	7		9	43	11			
#4 Sawlog	J	30	30		12	23	54	100	96	100
#5 Utility	IJ	24	24		29	30	15	100	30	100
#6 Utility	X	3	3		3	3	3		4	
#7 Chipper	Y	2	2		3	1				
Statistical Summary										
Coeff. of Variation	%	47.2	47.2		87.3	106.6	113.5	400.0	308.2	
Two Standard Error	ક	25.5	25.5		47.1	57.6	61.3	216.0	166.4	
Number and Type of P		MP =	16							
Number of Potential	Trees	81								
Plots/Ha		1.3								
Cruised Trees/Plot		5.1								
Slope % Statistics										

Min= 15, Max=102, CV=43.7, Std Error of Mean=5.9, 2SE%=23.3

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

BS- 3 , p20

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Average Line Method

Grades: MOF Computerized

Computerized Decay Computerized Waste

Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Block Summary

FIZ: B

PSYU: Nootka

Net Area: Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [RW outside : 1.1]

			~ 15		_	_		_		
******		Total	Conifer	Decid	F	C	H	В	Y	PW
Wtilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable	m3	362	362		222	22	63	6	12	38
Net Merchantable Net Merch - All	m3 m3/ha	326 297	326 297		206 187	13 12	57 52	6 5	10	35 32
Distribution	왕	100	100		63	4	17	2	3	11
Decay Waste	% %	4 1	4 1		2	24 10	3 1	2	9 0	1
Waste(billing)	8	1	1		0	16	1	1	0	
Breakage Total Cull (DWB)	%	5	5 10		5 7	7 41	6 10	5 8	7 16	5 6
Stems/Ha (Live & DP)	70	259.6	259.6		95.4	21.0	92.1	4.5	9.4	37.2
Avg DBH (Live & DP) Snags/Ha	cm	47.4	47.4		62.4	40.7	34.0	39.1	38.5	36.9
Avg Snag DBH	cm									
Gross Merch Vol/Tree Net Merch Vol/Tree	m3 m3	1.27 1.14	1.27 1.14		2.11 1.96	0.93 0.55	0.62 0.56	1.27 1.17	1.12 0.94	0.92
Avg Weight Total Ht	m	24.6	24.6		25.3	26.4	22.4	25.9	25.3	22.5
Avg Weight Merch Ht	m	19.6	19.6		21.0	20.7	16.5	19.3	18.2	16.1
Avg 10.0 m Log Net	m3	0.73	0.73		1.07	0.41	0.50	0.62	0.51	0.45
Avg 10.0 m Log Gross Avg # of 10.0 m Logs Net Immature	/Tree %	0.77 1.65	0.77 1.65		1.10 1.92	0.61 1.52	0.52 1.21	0.63 2.00	0.56 2.00	0.46
Net 2nd Growth Average Slope Algorithm Grades %	90 90	51								
#2 Sawlog	H	13	13		15	38	7			
#3 Sawlog	I	4	4		4		7			
#4 Sawlog	J	37	37		13	11	73	100	100	100
#5 Utility	U	45	45		68	37	11			
#6 Utility	X	1	1			14	2			
Statistical Summary										
Coeff. of Variation	%	47.2	47.2		87.3	106.6	113.5	400.0	308.2	
Two Standard Error	8	25.5	25.5		47.1	57.6	61.3	216.0	166.4	
Number and Type of P		MP =	16							
Number of Potential	Trees	81								
Plots/Ha Cruised Trees/Plot		1.3 5.1								
Slope % Statistics		5.1								

Slope % Statistics

Min= 15, Max=102, CV=43.7, Std Error of Mean=5.9, 2SE%=23.3

TS- 1 , p21

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

Net Area: Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [Block: 4.7]

		Total	Conifer	Decid	F	C	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	4278	4278		1624	1439	1140		76	
Net Merchantable	m3	3345	3345		1432	791	1059		63	
Net Merch - All	m3/ha	712	712		305	168	225		13	
Distribution	8	100	100		43	24	32		2	
Decay	8	12	12		5	28	1		9	
Waste	8	4	4		2	10			0	
Waste(billing)	%	5	5		2	19			0	
Breakage	8	6	6		5	7	6		7	
Total Cull (DWB)	ક	22	22		12	45	7		16	
Stems/Ha (Live & DP)		368.7	368.7		59.4	141.9	148.1		19.3	
Avg DBH (Live & DP)	cm	56.4	56.4		82.1	56.8	44.0		38.5	
Snags/Ha		85.5	85.5				85.5			
Avg Snag DBH	cm	18.3	18.3				18.3			
Gross Merch Vol/Tree	m3	2.47	2.47		5.81	2.16	1.64		0.83	
Net Merch Vol/Tree	m3	1.93	1.93		5.13	1.19	1.52		0.70	
Avg Weight Total Ht	m	33.6	33.6		40.1	29.9	30.5		19.0	
Avg Weight Merch Ht	m	28.0	28.0		35.1	23.5	23.4		13.5	
Avg 10.0 m Log Net	m3	0.87	0.87		1.55	0.64	0.72		0.38	
Avg 10.0 m Log Gross	m3	1.04	1.04		1.66	1.03	0.73		0.42	
Avg # of 10.0 m Logs	/Tree	2.38	2.38		3.50	2.09	2.25		2.00	
Net Immature	ક									
Net 2nd Growth	용									
Algorithm Grades %										
#1 Lum/#1 Prem	D	2.	2.		4					
#2 Lum/#1 Lum	F	6	6		15					
#2 Sawlog	Н	30	30		33	43	20			
#3 Sawlog	I	7	7		7	13	11			
#4 Sawlog	J	30	30		13	26	52		88	
#5 Utility	IJ	19	19		19	29	14			
#6 Utility	X	3	3		4	1	2		12	
#7 Chipper	Y	3	3		5	1	1			
Statistical Summary	-	3	3		3	_	_			
Coeff. of Variation	%	48.7	48.7		110.8	90.5	76.7		300.0	
Two Standard Error	8	37.4	37.4		85.2	69.6	58.9		230.6	
Number and Type of P		MP =	9							
Number of Potential		41	-							
Plots/Ha		1.9								
Cruised Trees/Plot		4.7								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

TS-2, p22

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste
Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

Net Area: Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [All Treatment Units: 6.6]

## Win DBH cm (M)			Total	Conifer	Decid	F	C	Н	В	Y	PW
Stump Ht cm (M)	Utilization Limits										
Top Dia cm (M) Log Len m	, ,										
Volume and Size Data	_ ,										
Volume and Size Data Gross Merchantable m3 2769 2769 1453 356 664 104 191	Top Dia cm (M)										
Scross Merchantable	Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Net Merch - All m3/ha 365 365 203 32 91 15 24 Distribution % 100 100 56 9 25 4 7 Decay % 6 6 6 2 24 3 2 9 Waste % 2 2 2 0 10 1 1 1 0 Waste(billing) % 2 2 2 0 16 1 1 0 0 Breakage % 6 6 6 5 7 6 5 7 Total Cull (DWB) % 13 13 8 41 10 8 16 Stems/Ha (Live & DP) 293.1 293.1 71.0 57.8 126.1 12.5 25.8 Avg DBR (Live & DP) cm 46.4 46.4 67.6 40.7 34.8 39.1 38.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 1.43 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Rt m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg 10.0 m Log Weight Merch Rt Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog I 9 9 9 10 11 #3 Sawlog I 9 9 9 10 11 #4 Sawlog J 31 31 31 11 15 56 100 100 #5 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 29 29 29 38 37 18 #6 Utility U 39 29 29 38 37 18 #6 Utility U 39 29 29 38 37 18 #6 Utility U 39 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 49 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 29 29 38 37 18 #6 Utility U 59 25 25 25 25 25 25 25 25 25 25 25 25 25											
Net Merch - All m3/ha 365 365 203 32 91 15 24 Distribution \$ 100 100 56 9 25 4 7 Decay \$ 6 6 6 2 24 3 2 9 Waste \$ 2 2 0 10 1 1 1 0 Waste(billing) \$ 2 2 0 0 10 1 1 0 Breakage \$ 6 6 6 5 7 6 5 7 Total Cull (DWB) \$ 13 13 8 41 10 8 16 Stems/Ha (Live & DP) 293.1 293.1 71.0 57.8 126.1 12.5 25.8 Avg DBH (Live & DP) cm 46.4 46.4 67.6 40.7 34.8 39.1 38.5 Snags/Ha Avg Shag DBH cm Gross Merch Vol/Tree m3 1.43 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Gross m3 0.78 0.72 1.12 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature \$ Net Immature \$ Net 2nd Growth \$ Algorithm Grades \$ #2 Sawlog I 9 9 9 10 11 15 1 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility U 29 29 39 38 37 18 #6 Utility U 29 29 39 38 37 18 #6 Utility U 29 29 39 38 37 18 #6 Utility T X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation \$ 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha											
Distribution \$ 100 100 56 9 25 4 7 Decay \$ 6 6 6 2 2 24 3 2 9 Waste \$ 2 2 0 10 1 1 1 0 Waste(billing) \$ 2 2 2 0 16 1 1 1 0 Bareakage \$ 6 6 6 5 7 7 Total Cull (DWB) \$ 13 13 8 41 10 8 16 Stems/Ha (Live & DP) 293.1 293.1 71.0 57.8 126.1 12.5 25.8 Avg DBH (Live & DP) cm 46.4 46.4 67.6 40.7 34.8 39.1 38.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Gross m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg 9 4 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature \$ Net 2nd Growth \$ 1 1 1 1 1 56 100 100 HS Sunday J 31 31 11 11 56 100 100 HS Sunday J 31 31 11 11 56 100 100 HS Sunday J 31 31 11 11 56 100 100 HS Utility U 29 29 38 37 18 HS Savlog J 31 31 11 11 56 100 100 HS Utility U 29 29 38 37 18 HS Utility U 29 29 38 37 18 HS Utility U 29 29 38 37 18 HS Utility U 29 29 39 38 37 18 HS Utility U 29 29 39 38 37 18 HS Utility U 29 29 39 38 37 18 HS Utility U 29 29 39 38 37 18 HS Utility U 29 29 39 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 27 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29 29 38 37 18 HS Utility U 29 29											
Decay \$ 6 6 6 2 2 24 3 2 9 9 8 8 40 1 1 0 1 1 0 8 8 16 1 1 1 0 1 0 8 8 16 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1		m3/ha									
Waste (billing)	Distribution		100	100		56		25	4		
Waste(billing)	Decay					2		3	2	9	
Breakage \$ 6 6 6 5 7 6 5 7 6 5 7 7 7 7 7 7 8 7 8 7 8 8 1 8 1 8 1 1 8 8 1 1 8 8 1 1 1 8 8 1											
Total Cull (DWB)	Waste(billing)	-		2		~	16	1	1	0	
Stems/Ha (Live & DP)											
Avg DBH (Live & DP) cm 46.4 46.4 67.6 40.7 34.8 39.1 38.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 1.43 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 40 38 11 #4 Sawlog J 31 31 31 11 11 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha		%									
Snags/Ha	Stems/Ha (Live & DP)										
Avg Snag DBH cm Gross Merch Vol/Tree m3 1.43 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 1 2 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #4 Sawlog J 31 31 31 11 156 100 100 100 #5 Use Interval of the statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha	Avg DBH (Live & DP)	cm	46.4	46.4		67.6	40.7	34.8	39.1	38.5	
Gross Merch Vol/Tree m3 1.43 1.43 3.10 0.93 0.80 1.27 1.12 Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 1 1 1 1 1 1 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 11 1 56 100 100 #5 Utility X 3 3 3 1 1 1 4 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha	Snags/Ha										
Net Merch Vol/Tree m3 1.25 1.25 2.87 0.55 0.72 1.17 0.94 Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 #3 Sawlog I 9 9 9 10 11 #4 Sawlog J 31 31 31 11 11 56 100 100 #5 Utility U 29 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha	Avg Snag DBH	cm									
Avg Weight Total Ht m 28.5 28.5 30.4 26.4 26.7 25.9 25.3 Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 9 9 9 10 11 48 4 Sawlog J 31 31 11 11 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Sawlog Tation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha	Gross Merch Vol/Tree										
Avg Weight Merch Ht m 23.1 23.1 25.6 20.7 20.6 19.3 18.2 Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 11 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha		m3									
Avg 10.0 m Log Net m3 0.72 0.72 1.08 0.41 0.54 0.62 0.51 Avg 10.0 m Log Gross m3 0.78 0.78 1.11 0.61 0.56 0.63 0.56 Avg # of 10.0 m Logs/Tree 1.84 1.84 2.79 1.52 1.42 2.00 2.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 11 11 11 11 11 11 11 11 11 11 11 11		m									
Avg 10.0 m Log Gross m3	5 5										
Avg # of 10.0 m Logs/Tree											
Net Immature											
Net 2nd Growth % Algorithm Grades % #2 Sawlog H 28 28 40 38 11 #3 Sawlog I 9 9 10 11 #4 Sawlog J 31 31 11 11 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 1 14 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 6 Number of Potential Trees 33 Plots/Ha 0.9	Avg # of 10.0 m Logs		1.84	1.84		2.79	1.52	1.42	2.00	2.00	
#2 Sawlog H 28 28 40 38 11 #3 Sawlog I 9 9 10 11 #4 Sawlog J 31 31 11 156 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation \$ 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error \$ 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9											
#2 Sawlog	Net 2nd Growth	%									
#2 Sawlog	Algorithm Grades %										
#3 Sawlog I 9 9 10 11 #4 Sawlog J 31 31 11 11 56 100 100 #5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9		H	28	28		40	38	11			
#5 Utility U 29 29 38 37 18 #6 Utility X 3 3 3 1 14 4 Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9		I	9	9		10		11			
#6 Utility X 3 3 1 1 4 4 Statistical Summary Coeff. of Variation \$ 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error \$ 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9	#4 Sawlog	J	31	31		11	11	56	100	100	
Statistical Summary Coeff. of Variation % 46.5 46.5 67.0 138.9 161.3 244.9 244.9 Two Standard Error % 48.8 48.8 70.4 145.8 169.3 257.1 257.1 Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9	#5 Utility	U	29	29		38	37	18			
Coeff. of Variation	#6 Utility	X	3	3		1	14	4			
Two Standard Error	Statistical Summary										
Number and Type of Plots MP = 6 Number of Potential Trees 33 Plots/Ha 0.9	Coeff. of Variation	왕	46.5	46.5		67.0	138.9	161.3	244.9	244.9	
Number of Potential Trees 33 Plots/Ha 0.9	Two Standard Error	%	48.8	48.8		70.4	145.8	169.3	257.1	257.1	
Plots/Ha 0.9			MP =	6							
	Number of Potential	Trees									
Cruised Trees/Plot 5.5	Plots/Ha		0.9								
	Cruised Trees/Plot		5.5								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

TS-3, p23

Average Line Method

Average bine

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Net Area: Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [Block: 6.2]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data Gross Merchantable	7	2601	2601		1365	335	624	98	180	
	m3 m3	2001	2001		1365	198	564	98 91	151	
Net Merchantable Net Merch - All	m3 m3/ha	2266 365	2266 365		203	198 32	564 91	91 15	24	
Distribution	1113/11a %	100	100		203 56	9	25	4	7	
Decay	%	100	6		2	24	3	2	9	
Waste	8	2	2		0	10	1	1	0	
Waste(billing)	% %	2	2		0	16	1	1	0	
Breakage	8	6	6		5	7	6	5	7	
Total Cull (DWB)	% %	13	13		8	41	10	8	16	
Stems/Ha (Live & DP)	70	293.1	293.1		71.0	57.8	126.1	12.5	25.8	
Avg DBH (Live & DP)	cm	46.4	46.4		67.6	40.7	34.8	39.1	38.5	
Snags/Ha	Cili	40.4	40.4		07.0	40.7	34.0	39.1	30.5	
Avg Snag DBH	cm									
Gross Merch Vol/Tree		1.43	1.43		3.10	0.93	0.80	1.27	1.12	
Net Merch Vol/Tree	m3	1.25	1.25		2.87	0.55	0.72	1.17	0.94	
Avg Weight Total Ht	m	28.5	28.5		30.4	26.4	26.7	25.9	25.3	
Avg Weight Merch Ht	m	23.1	23.1		25.6	20.7	20.6	19.3	18.2	
Avg 10.0 m Log Net	m3	0.72	0.72		1.08	0.41	0.54	0.62	0.51	
Avg 10.0 m Log Gross		0.78	0.78		1.11	0.61	0.56	0.63	0.56	
Avg # of 10.0 m Logs		1.84	1.84		2.79	1.52	1.42	2.00	2.00	
Net Immature	8									
Net 2nd Growth	8									
Algorithm Grades %										
#2 Sawlog	H	28	28		40	38	11			
#3 Sawlog	I	9	9		10		11			
#4 Sawlog	J	31	31		11	11	56	100	100	
#5 Utility	U	29	29		38	37	18			
#6 Utility	X	3	3		1	14	4			
Statistical Summary										
Coeff. of Variation	용	46.5	46.5		67.0	138.9	161.3	244.9	244.9	
Two Standard Error	왕	48.8	48.8		70.4	145.8	169.3	257.1	257.1	
Number and Type of P		MP =	б							
Number of Potential	Trees	33								
Plots/Ha		0.9								
Cruised Trees/Plot		5.5								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

TS- 4 , p24

Average Line Method

Project: AVCF_NOVA

Licence Number: COMM CP: PRE

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

Net Area: Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [RW outside : 0.4]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data	2	160	1.00		0.0	2.2	4.0	-	10	
Gross Merchantable	m3 m3	168 146	168 146		88 81	22 13	40 36	6	12 10	
Net Merchantable Net Merch - All	m3 m3/ha	365	146 365		203	32	36 91	6 15	24	
Distribution	1113/11a %	100	100		203 56	9	25	4	7	
Decay	%	100	6		2	24	3	2	9	
Waste	8	2	2		0	10	1	0	0	
Waste(billing)	%	2	2		0	16	1	1	0	
Breakage	8	6	6		5	7	6	5	7	
Total Cull (DWB)	%	13	13		8	41	10	8	16	
Stems/Ha (Live & DP)	•	293.1	293.1		71.0	57.8	126.1	12.5	25.8	
Avg DBH (Live & DP)	cm	46.4	46.4		67.6	40.7	34.8	39.1	38.5	
Snags/Ha	Citi	10.1	10.1		07.0	10.7	31.0	37.1	30.3	
Avg Snag DBH	cm									
Gross Merch Vol/Tree		1.43	1.43		3.10	0.93	0.80	1.27	1.12	
Net Merch Vol/Tree	m3	1.25	1.25		2.87	0.55	0.72	1.17	0.94	
Avg Weight Total Ht	m	28.5	28.5		30.4	26.4	26.7	25.9	25.3	
Avg Weight Merch Ht	m	23.1	23.1		25.6	20.7	20.6	19.3	18.2	
Avg 10.0 m Log Net	m3	0.72	0.72		1.08	0.41	0.54	0.62	0.51	
Avg 10.0 m Log Gross	m3	0.78	0.78		1.11	0.61	0.56	0.63	0.56	
Avg # of 10.0 m Logs	/Tree	1.84	1.84		2.79	1.52	1.42	2.00	2.00	
Net Immature	%									
Net 2nd Growth	용									
Algorithm Grades %										
#2 Sawlog	H	28	28		40	38	11			
#3 Sawlog	I	9	9		10		11			
#4 Sawlog	J	31	31		11	11	56	100	100	
#5 Utility	U	29	29		38	37	18			
#6 Utility	X	3	3		1	14	4			
Statistical Summary										
Coeff. of Variation	%	46.5	46.5		67.0	138.9	161.3	244.9	244.9	
Two Standard Error	8	48.8	48.8		70.4	145.8	169.3	257.1	257.1	
Number and Type of P		MP =	6							
Number of Potential	rrees	33 0.9								
Plots/Ha										
Cruised Trees/Plot		5.5								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

TS-5, p25

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:24:47PM
Filename: comm_for_blk1_typed_lf.ccp
Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [All Treatment Units: 1.0]

		Total	Conifer	Decid	F	C	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	277	277		191		33			54
Net Merchantable	m3	257	257		177		29			50
Net Merch - All	m3/ha	257	257		177		29			50
Distribution	용	100	100		69		11			20
Decay	%	2	2		2		3			1
Waste	용	0	0		0					
Waste(billing)	%	0	0		0					
Breakage	용	5	5		5		6			5
Total Cull (DWB)	ક	7	7		7		10			6
Stems/Ha (Live & DP)		240.4	240.4		109.3		72.6			58.4
Avg DBH (Live & DP)	cm	48.1	48.1		60.3		33.1			36.9
Snags/Ha										
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	1.15	1.15		1.75		0.45			0.92
Net Merch Vol/Tree	m3	1.07	1.07		1.62		0.41			0.86
Avg Weight Total Ht	m	21.2	21.2		22.0		15.0			22.5
Avg Weight Merch Ht	m	16.6	16.6		18.0		9.3			16.1
Avg 10.0 m Log Net	m3	0.74	0.74		1.07		0.43			0.45
Avg 10.0 m Log Gross	m3	0.76	0.76		1.09		0.45			0.46
Avg # of 10.0 m Logs	/Tree	1.52	1.52		1.60		1.00			2.00
Net Immature	ક									
Net 2nd Growth	ક									
Algorithm Grades %										
#4 Sawlog	J	41	41		15		100			100
#5 Utility	U	59	59		85					
Statistical Summary										
Coeff. of Variation	%									
Two Standard Error	ક									
Number and Type of P	lots	MP =	1							
Number of Potential	Trees	7								
Plots/Ha		1.0								
Cruised Trees/Plot		7.0								

TS-6, p26

Average Line Method

Average bine

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage Type Summary
 FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [Block: 0.3]

		Total	Conifer	Decid	F	С	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	83	83		57		10			16
Net Merchantable	m3	77	77		53		9			15
Net Merch - All	m3/ha	257	257		177		29			50
Distribution	8	100	100		69		11			20
Decay	8	2	2		2		4			1
Waste	8	0	0		0					
Waste(billing)	8	0	0		0					
Breakage	8	5	5		5		6			5
Total Cull (DWB)	용	7	7		7		10			6
Stems/Ha (Live & DP)	240.4	240.4		109.3		72.6			58.4
Avg DBH (Live & DP) cm	48.1	48.1		60.3		33.1			36.9
Snags/Ha	,									
Avg Snag DBH	cm									
Gross Merch Vol/Tree	e m3	1.15	1.15		1.75		0.45			0.92
Net Merch Vol/Tree	m3	1.07	1.07		1.62		0.41			0.86
Avg Weight Total Ht	m	21.2	21.2		22.0		15.0			22.5
Avg Weight Merch Ht	m	16.6	16.6		18.0		9.3			16.1
Avg 10.0 m Log Net	m3	0.74	0.74		1.07		0.43			0.45
Avg 10.0 m Log Gross	s m3	0.76	0.76		1.09		0.45			0.46
Avg # of 10.0 m Logs		1.52	1.52		1.60		1.00			2.00
Net Immature	8									
Net 2nd Growth	%									
Algorithm Grades %										
#4 Sawlog	J	41	41		15		100			100
#5 Utility	U	59	59		85					
Statistical Summary										
Coeff. of Variation	%									
Two Standard Error	8									
Number and Type of I	Plots	MP =	1							
Number of Potential		7								
Plots/Ha		1.0								
Cruised Trees/Plot		7.0								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

TS-7, p27

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage Type Summary FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [RW outside : 0.7]

		Total	Conifer	Decid	F	C	Н	В	Y	PW
Utilization Limits										
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0	10.0
Volume and Size Data										
Gross Merchantable	m3	194	194		134		23			38
Net Merchantable	m3	180	180		124		21			35
Net Merch - All	m3/ha	257	257		177		29			50
Distribution	용	100	100		69		11			20
Decay	용	2	2		2		3			1
Waste	용	0	0		0					
Waste(billing)	8	0	0		0					
Breakage	용	5	5		5		6			5
Total Cull (DWB)	용	7	7		7		10			6
Stems/Ha (Live & DP)		240.4	240.4		109.3		72.6			58.4
Avg DBH (Live & DP)	cm	48.1	48.1		60.3		33.1			36.9
Snags/Ha										
Avg Snag DBH	cm									
Gross Merch Vol/Tree	m3	1.15	1.15		1.75		0.45			0.92
Net Merch Vol/Tree	m3	1.07	1.07		1.62		0.41			0.86
Avg Weight Total Ht	m	21.2	21.2		22.0		15.0			22.5
Avg Weight Merch Ht	m	16.6	16.6		18.0		9.3			16.1
Avg 10.0 m Log Net	m3	0.74	0.74		1.07		0.43			0.45
Avg 10.0 m Log Gross	m3	0.76	0.76		1.09		0.45			0.46
Avg # of 10.0 m Logs	/Tree	1.52	1.52		1.60		1.00			2.00
Net Immature	용									
Net 2nd Growth	용									
Algorithm Grades %										
#4 Sawlog	J	41	41		15		100			100
#5 Utility	U	59	59		85					
Statistical Summary										
Coeff. of Variation	용									
Two Standard Error	용									
Number and Type of P	lots	MP =	1							
Number of Potential	Trees	7								
Plots/Ha		1.0								
Cruised Trees/Plot		7.0								

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

CSTND- 1 , p28

Cutting Permit Stand Table (stems/ha)

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Breakage

Computerized Waste

FIZ: B PSYU: Nootka

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd Region: 2 - West Coast Cruised by: AZMETH

District: 04 - South Island

Version: 2015.00 IFS build 5947

[All Treatment Units: 12.3]

Licence Number: COMM CP: PRE

[All Treatment Units	: 12.3]								
	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m DBH	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15										
20								20.8		32.7
25		19.2	18.4				37.6			
30		10.5	13.3				23.8			
35		8.5	5.9			4.8	19.2			
40	6.9		26.7	6.7	7.4		47.7	13.8		
45	3.5	10.0	27.6				31.1 24.9			
50 55	7.9 3.7	12.9 3.5	4.1 3.5				24.9 10.7			
60	2.7	11.8	8.6				23.1			
65	10.1	7.3	0.0				17.4			
70	6.5	6.8					13.3			
75	6.1						6.1			
80	5.1						5.1			
85	4.3	1.6					5.9			
90	2.7						2.7			
95	4.7	1.2	1.2				7.1			
100	1.1						1.1			
105	1.0	1 0					1.0			
110 115	2.7	1.9					4.6			
120										
125										
130										
135										
140	0.6						0.6			
145										
150										
175										
200										
225 250										
275										
Total	69.7	85.2	109.3	6.7	7.4	4.8	283.1			
Dead P			20.8		13.8			34.6		
Dead U										
Live U			32.7		_					32.7
12.5 +	71 0		rage DBH(c			26.0	E2 2	20.0		10.2
12.5 + 17.5 +	71.9 71.9	51.5 51.5	41.4 41.4	39.1 39.1	38.5 38.5	36.9 36.9	53.2 53.2	29.8 29.8		18.3 18.3
22.5 +	71.9	51.5	41.4	39.1	38.5	36.9	53.2	38.5		10.3
27.5 +	71.9	57.2	44.2	39.1	38.5	36.9	56.4	38.5		
32.5 +	71.9	60.8	46.3	39.1	38.5	36.9	58.5	38.5		

CSTND- 2 , p29

Cutting Permit Stand Table (stems/ha)

Average Line Method

Grade

FIZ: B PSYU: Nootka 28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Average Line Metho

Grades: MOF Computerized Computerized Decay

Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH
and Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

[Block : 11.2]

[BIOCK · II.2]										
	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15								01 5		25.0
20		100	10.0				20.0	21.5		35.9
25		19.8	19.0				38.8			
30		11.5	14.6			1 (26.1			
35 40	7 1	9.4	1.9	<i>c</i> 0	0 1	1.6	12.9	14.2		
45	7.1 1.2		28.5 29.6	6.9	8.1		50.6 30.8	14.3		
50	8.4	13.9	4.5				26.8			
55	4.0	3.8	3.9				11.8			
60	2.8	12.8	9.1				24.6			
65	8.3	8.0	9.⊥				16.3			
70	6.9	7.1					14.0			
75	4.6	,					4.6			
80	5.5						5.5			
85	4.5	1.7					6.2			
90	2.9						2.9			
95	5.0	1.3	1.3				7.7			
100	1.2						1.2			
105	1.1						1.1			
110	3.0	2.1					5.1			
115										
120										
125										
130										
135										
140	0.6						0.6			
145										
150										
175										
200										
225										
250										
275	6									
Total	67.2	91.5	112.4	6.9	8.1	1.6	287.7			
Dead P			21.5		14.3			35.7		
Dead U			35.9							35.9
Live U		Δπο	rage DBH(rm) at 5 I	evels					35.9
12.5 +	73.1	51.8	41.8	39.1	38.5	36.9	53.5	29.8		18.3
17.5 +	73.1	51.8	41.8	39.1	38.5	36.9	53.5	29.8		18.3
22.5 +	73.1	51.8	41.8	39.1	38.5	36.9	53.5	38.5		10.5
27.5 +	73.1	57.2	44.6	39.1	38.5	36.9	56.8	38.5		
32.5 +	73.1	60.8	46.9	39.1	38.5	36.9	59.2	38.5		

Licence Number: COMM CP: PRE

Cutting Permit Stand Table (stems/ha)

FIZ: B

Grades: MOF Computerized

Computerized Decay

Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island

CSTND- 3 , p30 28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

[RW outside : 1.1		l
--------------------	--	---

Average Line Method

Project: AVCF_NOVA

i im odebi	ue · 1.1	J									
		F	C	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH Stump Ht Top Dia	cm (M) cm (M)	17.5 30.0 15.0									
Log Len DBH Class	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
5 10 15											
20 25 30			13.0	12.5				25.5	14.1		
35 40 45		4.7 27.6		46.2 8.4 7.1	4.5		37.2	83.4 17.6 34.7	9.4		
50 55		2.6	3.0					5.6			
60 65		1.8 28.4	2.0	3.8				7.7 28.4			
70 75		2.9 20.9	3.0					5.9 20.9			
80 85 90		1.1 2.9 0.9						1.1 2.9 0.9			
95 100 105		1.5						1.5			
110 115 120											
125 130											
135 140 145											
150 175 200											
225 250											
275 Total Dead P		95.4	21.0	78.0 14.1	4.5	9.4	37.2	236.1	23.5		
Dead U Live U											
10 5		60.4		rage DBH(c		evels	26.0	40.0	20.0		
12.5 + 17.5 + 22.5 +		62.4 62.4 62.4	40.7 40.7 40.7	35.7 35.7 35.7	39.1 39.1 39.1		36.9 36.9 36.9	48.8 48.8 48.8	29.8 29.8 38.5		
27.5 + 32.5 +		62.4 62.4	58.9 58.9	37.5 37.5	39.1 39.1		36.9 36.9	51.1 51.1	38.5 38.5		

Average Line Method

Project: AVCF_NOVA

CSTCK- 1 , p31

Cutting Permit Stock Table (m3/ha) FIZ: B

PSYU: Nootka

Grades: MOF Computerized

Computerized Decay

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

[All Treatment Units : 12.3]

Licence Number: COMM CP: PRE

[All Treatme	ent units	: 12.3									
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization	Limits										-
	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht o		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class 5											
10											
15											
20									1.8		
25			2.1	2.8				4.9	1.0		
30			2.4	4.7				7.0			
35			2.4	2.4			4.1	8.8			
40		6.0		26.5	7.8	5.2		45.5	13.0		
45		2.1		40.1				42.2			
50		14.4	11.9	8.7				35.0			
55		7.9	4.0	9.2				21.1			
60		6.6	14.3	30.3				51.1			
65		25.4	12.0					37.5			
70		23.7	14.0					37.7			
75		20.1						20.1			
80 85		21.3 18.9	3.8					21.3 22.7			
90		13.0	3.0					13.0			
95		30.8	5.3	11.0				47.0			
100		8.4	3.3	11.0				8.4			
105		7.3						7.3			
110		24.0	9.4					33.3			
115											
120											
125											
130											
135											
140		10.0						10.0			
145 150											
175											
200											
225											
250											
275											
Total		240.0	81.5	135.5	7.8	5.2	4.1	474.1			
Dead P				1.8		13.0			14.8		
				al Volumes							
17.5 +		240.0	81.5	135.5	7.8	5.2	4.1	474.1	14.8		
22.5 +		240.0	81.5	135.5	7.8	5.2	4.1	474.1	13.0		
27.5 +		240.0	79.4	132.8	7.8	5.2	4.1	469.2	13.0		
32.5 + 37.5 +		240.0 240.0	77.0 74.7	128.1 125.7	7.8 7.8	5.2 5.2	4.1	462.2 453.4	13.0 13.0		
37.5 + 42.5 +		240.0	74.7	99.2	7.8	5.∠		453.4	13.0		
47.5 +		234.0	74.7	59.1				365.7			
		202.0		JJ . 1				555.7			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

CSTCK- 2 , p32

Cutting Permit Stock Table (m3/ha)

Average Line Method

Grades: MOF Computerized Computerized Decay

FIZ: B PSYU: Nootka

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

[Block : 11.2]

[BIOCK · II.2]										
	F	С	Н	В	Y	PW	Total	DP	DU	LU
Jtilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH										
lass 5										
10										
15										
20								1.9		
25		2.2	2.9				5.1	1.0		
30		2.6	5.1				7.7			
35		2.6	0.8			1.3	4.7			
40	6.2	2.0	28.4	8.1	5.7	1.5	48.3	13.4		
45	0.7		43.1	0.1	J.,		43.8	10.1		
50	15.4	13.0	9.5				37.9			
55	8.7	4.4	10.1				23.2			
60	6.8	15.5	32.0				54.2			
65	22.1	13.2					35.3			
70	25.1	14.7					39.8			
75	16.2						16.2			
80	23.0						23.0			
85	19.5	4.2					23.7			
90	14.0						14.0			
95	33.0	5.8	12.0				50.8			
100	9.2						9.2			
105	8.0						8.0			
110	26.3	10.3					36.6			
115										
120										
125										
130										
135	11 0						11 0			
140	11.0						11.0			
145 150										
175										
200										
225										
250										
275										
otal	245.2	88.3	143.9	8.1	5.7	1.3	492.6			
ead P	213.2	00.5	1.9	0.1	13.4	5	1,2.0	15.3		
		Tot	al Volumes	for 7 Le						
.7.5 +	245.2	88.3	143.9	8.1	5.7	1.3	492.6	15.3		
2.5 +	245.2	88.3	143.9	8.1	5.7	1.3	492.6	13.4		
27.5 +	245.2	86.2	141.0	8.1	5.7	1.3	487.5	13.4		
2.5 +	245.2	83.6	135.9	8.1	5.7	1.3	479.8	13.4		
37.5 +	245.2	81.0	135.1	8.1	5.7		475.1	13.4		
12.5 +	239.1	81.0	106.7				426.8			
47.5 +	238.4	81.0	63.6				383.0			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

CSTCK- 3 , p33

Cutting Permit Stock Table (m3/ha) ed FIZ: B

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Project: AVCF_NOVA

[RW outside : 1.1]

Average Line Method

[RW outside : 1.1]									
	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M) Log Len m	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0	15.0 10.0
DBH III	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15										
20								1.2		
25		1.4	1.9				3.3			
30 35			18.7			32.0	50.7			
40	4.1		7.2	5.3		32.0	16.5	8.8		
45	16.8		9.5	3.3			26.3	0.0		
50	4.7	1.4	J.5				6.1			
55										
60	4.4	1.9	13.3				19.7			
65	58.9						58.9			
70	9.4	6.9					16.3			
75	59.8						59.8			
80 85	4.5 12.8						4.5 12.8			
90	3.5						3.5			
95	8.0						8.0			
100										
105										
110										
115										
120 125										
130										
135										
140										
145										
150										
175										
200										
225 250										
275										
Total	186.9	11.6	50.6	5.3		32.0	286.5			
Dead P	100.5		1.2	3.3	8.8	32.0	200.5	10.0		
		Tota	al Volumes	for 7 Le						
17.5 +	186.9	11.6	50.6	5.3		32.0	286.5	10.0		
22.5 +	186.9	11.6	50.6	5.3		32.0	286.5	8.8		
27.5 +	186.9	10.2	48.7	5.3		32.0	283.2	8.8		
32.5 +	186.9	10.2	48.7	5.3		32.0	283.2	8.8		
37.5 + 42.5 +	186.9 182.9	10.2 10.2	30.0 22.8	5.3			232.4 215.9	8.8		
42.5 + 47.5 +	166.1	10.2	13.3				189.6			
_,,,,	100.1	10.2	13.3				100.0			

CBASL- 1 , p34

Cutting Permit Basal Area Table (m2/ha)

Average Line Method

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

[All Treatment Units : 12.3]

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

inii iieat	menc onics	. 12.3	1								
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH Stump Ht Top Dia Log Len DBH	cm (M) cm (M) cm (M) m	17.5 30.0 15.0 10.0									
Class 5 10 15											
20 25 30 35			0.8 0.9 0.9	0.8 0.9 0.5			0.5	1.6 1.7 1.9	0.8		0.9
40 45 50		0.8 0.5 1.7	2.5	3.3 4.2 0.9	0.8	0.9	0.5	5.8 4.7 5.0	1.6		
55 60 65		0.9 0.8 3.4	0.9 3.4 2.6	0.9				2.6 6.7 6.0			
70 75 80		2.5 2.6 2.5	2.5					4.9 2.6 2.5			
85 90 95		2.4 1.7 3.3	0.9	0.9				3.3 1.7 5.0			
100 105 110		0.9 0.9 2.6	1.7	0.9				0.9 0.9 4.3			
115 120		2.0	1.7					4.3			
125 130 135											
140 145 150		0.9						0.9			
175 200 225											
250 275											
Total Dead P Dead U		28.3	17.8	14.7 0.8	0.8	0.9 1.6	0.5	63.0	2.4		
Live U			Δτο	0.9 rage Basal	Area (mi	2) at 5 T.e	vels				0.9
12.5 + 17.5 + 22.5 +		28.3 28.3 28.3	17.8 17.8 17.8	14.7 14.7 14.7	0.8 0.8 0.8	0.9 0.9 0.9	0.5 0.5 0.5	63.0 63.0 63.0	2.4 2.4 1.6		0.9
27.5 + 32.5 +		28.3	17.0 16.1	13.9 13.1	0.8	0.9	0.5	61.3 59.6	1.6		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

CBASL- 2 , p35

Cutting Permit Basal Area Table (m2/ha)

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Breakage

Computerized Waste

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

[Block : 11.2]

[Block : II.2]										
	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits	-	C		D	±	- "	10041	DI	20	10
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20								0.8		0.9
25		0.8	0.8				1.7			
30		0.9	0.9			0 0	1.9			
35 40	0 0	0.9	0.2	0 0	0 0	0.2	1.3	1 7		
45	0.8 0.2		3.5 4.5	0.8	0.9		6.2 4.7	1.7		
50	1.8	2.7	0.9				5.4			
55	0.9	0.9	0.9				2.8			
60	0.8	3.7	2.6				7.1			
65	2.8	2.8	2.0				5.7			
70	2.6	2.6					5.2			
75	2.0	2.0					2.0			
80	2.7						2.7			
85	2.5	0.9					3.4			
90	1.8						1.8			
95	3.5	0.9	0.9				5.4			
100	0.9						0.9			
105	0.9						0.9			
110	2.8	1.9					4.7			
115										
120										
125										
130 135										
140	0.9						0.9			
145	0.9						0.9			
150										
175										
200										
225										
250										
275										
Total	28.2	19.3	15.4	0.8	0.9	0.2	64.8			
Dead P			0.8		1.7			2.5		
Dead U										
Live U			0.9			_				0.9
10.5	00.0		rage Basal				64.0	0.5		0 0
12.5 +	28.2	19.3	15.4	0.8	0.9	0.2	64.8	2.5		0.9
17.5 +	28.2 28.2	19.3	15.4	0.8	0.9	0.2	64.8	2.5		0.9
22.5 + 27.5 +	28.2	19.3 18.4	15.4 14.6	0.8	0.9	0.2	64.8 63.1	1.7 1.7		
27.5 + 32.5 +	28.2	17.5	13.6	0.8	0.9	0.2	61.2	1.7		
J4.J 1	20.2	11.5	13.0	0.0	0.9	0.2	01.2	1. /		

Licence Number: COMM CP: PRE

CBASL- 3 , p36

Cutting Permit Basal Area Table (m2/ha)

FIZ: B

Average Line Method

Grades: MOF Computerized

Computerized Decay PSYU: Nootka

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

Project: AVCF_NOVA [RW outside : 1.1]

		•									
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization											
	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
_	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									0.5		
25			0.5	0.5				1.1			
30											
35				4.0			4.0	8.0			
40		0.5		1.1	0.5			2.2	1.1		
45		4.0	0 5	1.1				5.1			
50 55		0.5	0.5					1.1			
60		0.5	0.5	1.1				2.2			
65		9.6	0.5					9.6			
70		1.1	1.1					2.2			
75		9.0						9.0			
80		0.5						0.5			
85		1.6						1.6			
90		0.5						0.5			
95		1.1						1.1			
100 105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175 200											
225											
250											
275											
Total		29.2	2.7	7.8	0.5		4.0	44.2			
Dead P				0.5		1.1			1.6		
Dead U											
Live U				_							
10.5		22.2				2) at 5 Le		44.0	1.6		
12.5 +		29.2 29.2	2.7	7.8	0.5		4.0	44.2	1.6		
17.5 + 22.5 +		29.2	2.7 2.7	7.8 7.8	0.5 0.5		4.0 4.0	44.2 44.2	1.6 1.1		
27.5 +		29.2	2.7	7.8	0.5		4.0	43.1	1.1		
32.5 +		29.2	2.2	7.3	0.5		4.0	43.1	1.1		

Block Stand Table (stems/ha)

BSTND- 1 , p37

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Average Line Method Grades: MOF Computerized FIZ: B

Grades: MOF Computerized FIZ: B
Computerized Decay PSYU: Nootka

Licence Number: COMM CP: PRE Computerized Waste Region: 2 - West Coast Project: AVCF_NOVA Computerized Breakage District: 04 - South Island

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [All Treatment Units: 12.3]

BIOCK · (II	1) - 001.61	OCK I, FIG	JUS III BI	.OCK · 10,	105. [A]	ii iieaciii	enc onics	• 12.5	J		
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15									20.8		20 7
20			19.2	18.4				27 6	20.8		32.7
25 30			10.5	13.3				37.6 23.8			
35			8.5	5.9			4.8	19.2			
40		6.9	0.5	26.7	6.7	7.4	1.0	47.7	13.8		
45		3.5		27.6	0.7	7.4		31.1	13.0		
50		7.9	12.9	4.1				24.9			
55		3.7	3.5	3.5				10.7			
60		2.7	11.8	8.6				23.1			
65		10.1	7.3					17.4			
70		6.5	6.8					13.3			
75		6.1						6.1			
80		5.1						5.1			
85		4.3	1.6					5.9			
90		2.7						2.7			
95		4.7	1.2	1.2				7.1			
100		1.1						1.1			
105		1.0						1.0			
110		2.7	1.9					4.6			
115											
120											
125											
130 135											
140		0.6						0.6			
145		0.0						0.0			
150											
175											
200											
225											
250											
275											
Total		69.7	85.2	109.3	6.7	7.4	4.8	283.1			
Dead P				20.8		13.8			34.6		
Dead U											
Live U			7	32.7							32.7
12.5 +		71.9	51.5	rage DBH(d	cm) at 5 1 39.1	38.5	36.9	53.2	29.8		18.3
12.5 + 17.5 +		71.9	51.5	41.4	39.1	38.5	36.9	53.2	29.8		18.3
22.5 +		71.9	51.5	41.4	39.1	38.5	36.9	53.2	38.5		10.3
27.5 +		71.9	57.2	44.2	39.1	38.5	36.9	56.4	38.5		
32.5 +		71.9	60.8	46.3	39.1	38.5	36.9	58.5	38.5		
			55.5	-0.5	J - • ±	55.5	55.5	55.5	55.5		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Average Line Method

Block Stand Table (stems/ha)

BSTND- 2 , p38

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Licence Number: COMM CP: PRE Region: 2 - West Coast

Cruised by: AZMETH District: 04 - South Island Version: 2015.00 IFS build 5947 Project: AVCF_NOVA Computerized Breakage

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [Block: 11.2]

		_	_		_						
Utilization	T	F	C	Н	В	Y	PW	Total	DP	DU	LU
	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
_	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (14)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	Ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									21.5		35.9
25			19.8	19.0				38.8	21.5		33.3
30			11.5	14.6				26.1			
35			9.4	1.9			1.6	12.9			
40		7.1	,,,	28.5	6.9	8.1		50.6	14.3		
45		1.2		29.6	0.5	0.1		30.8			
50		8.4	13.9	4.5				26.8			
55		4.0	3.8	3.9				11.8			
60		2.8	12.8	9.1				24.6			
65		8.3	8.0					16.3			
70		6.9	7.1					14.0			
75		4.6						4.6			
80		5.5						5.5			
85		4.5	1.7					6.2			
90		2.9						2.9			
95		5.0	1.3	1.3				7.7			
100		1.2						1.2			
105		1.1						1.1			
110		3.0	2.1					5.1			
115											
120											
125											
130											
135		0.6						2 6			
140		0.6						0.6			
145											
150											
175 200											
225											
250											
275											
Total		67.2	91.5	112.4	6.9	8.1	1.6	287.7			
Dead P		07.2	21.3	21.5	0.5	14.3	1.0	207.7	35.7		
Dead U				21.5		11.5			33.7		
Live U				35.9							35.9
2210 0			Ave	rage DBH(c	m) at 5 I	evels					33.3
12.5 +		73.1	51.8	41.8	39.1	38.5	36.9	53.5	29.8		18.3
17.5 +		73.1	51.8	41.8	39.1	38.5	36.9	53.5	29.8		18.3
22.5 +		73.1	51.8	41.8	39.1	38.5	36.9	53.5	38.5		
27.5 +		73.1	57.2	44.6	39.1	38.5	36.9	56.8	38.5		
32.5 +		73.1	60.8	46.9	39.1	38.5	36.9	59.2	38.5		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

Block Stand Table (stems/ha)

Average Line Method Grades: MOF Computerized FIZ: B

Computerized Decay

Computerized Waste Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

28-Sep-2015 07:24:47PM

BSTND- 3 , p39

Block :	(M)	-	001:Block	1,	Plots	in	Block:	16,	TUs: [RW	outside	:	1.1]
---------	-----	---	-----------	----	-------	----	--------	-----	--------	----	---------	---	-----	---

The control of the	
Min DBH cm (M) 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	LU
Stump Ht cm (M) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.	
Top Dia cm (M) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	17.5
Log Len m 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	30.0
DBH Class 5 10 15 20 20 25 30 35 46.2 46.2 37.2 83.4 40 4.7 8.4 4.5 17.6 9.4 45 27.6 7.1 34.7 50 2.6 3.0 55 60 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 35 20 20 20 20 20 20 20 20 20 20 20 20 20	15.0 10.0
Class 5 10 10 15 20 20 35 46.2 37.2 83.4 40 47 8.4 45 27.6 7.1 34.7 50 26 30 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 2.9 3.0 35 20 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	10.0
5 10 15 20 20 25 30 35 46.2 47 40 41 45 27.6 7.1 50 2.6 3.0 55 60 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 2.9 3.0 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	
10 15 20 25 30 35 46.2 57 40 47 48.4 40 4.7 50 2.6 3.0 55 60 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 75 20.9 80 1.1 85 2.9 90 0.9 95 1.5 100 105	
20 25 30 31 30 35 46.2 37.2 83.4 40 4.7 8.4 4.5 17.6 9.4 45 27.6 7.1 50 2.6 3.0 5.6 55 60 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 2.9 80 1.1 85 2.9 90 0.9 95 1.5 100 105	
25	
30 35 46.2 47 40 4.7 8.4 4.5 17.6 9.4 45 27.6 7.1 34.7 50 2.6 3.0 5.6 55 60 1.8 2.0 3.8 7.7 65 28.4 70 2.9 3.0 5.9 75 20.9 80 1.1 85 2.9 90 0.9 95 1.5 100 105 110	
35	
40 4.7 8.4 4.5 17.6 9.4 45 27.6 7.1 34.7 34.7 50 34.7 50 5.6 55 5.6 55 5.6 55 5.6 55 5.6 55 5.6 5.2 5.9 </td <td></td>	
45 27.6 7.1 34.7 50 2.6 3.0 5.6 55 60 1.8 2.0 3.8 7.7 65 28.4 28.4 70 2.9 3.0 5.9 75 20.9 20.9 80 1.1 1.1 85 2.9 2.9 90 0.9 0.9 95 1.5 1.5 100 105 110	
50 2.6 3.0 5.6 55 1.8 2.0 3.8 7.7 65 28.4 28.4 28.4 70 2.9 3.0 5.9 75 20.9 20.9 80 1.1 1.1 85 2.9 2.9 90 0.9 0.9 95 1.5 1.5 100 105 110	
55 60	
60 1.8 2.0 3.8 7.7 65 28.4 28.4 70 2.9 3.0 5.9 75 20.9 20.9 80 1.1 1.1 85 2.9 2.9 90 0.9 0.9 95 1.5 1.5 100 105	
65 28.4 28.4 28.4 70 2.9 3.0 5.9 75 20.9 20.9 80 1.1 1.1 85 2.9 90 0.9 95 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	
75 20.9 20.9 80 1.1 1.1 85 2.9 2.9 90 0.9 0.9 95 1.5 1.5 100 105	
80 1.1 1.1 85 2.9 2.9 90 0.9 0.9 95 1.5 1.5 100	
85 2.9 90 0.9 95 1.5 100 105 110	
90 0.9 0.9 95 1.5 1.5 100 105 110	
95 1.5 100 105 110	
100 105 110	
105 110	
110	
115	
120	
125	
130	
135	
140	
145 150	
175	
200	
225	
250	
275	
Total 95.4 21.0 78.0 4.5 37.2 236.1	
Dead P 14.1 9.4 23.5	
Dead U	
Live U Average DBH(cm) at 5 Levels	
12.5 + 62.4 40.7 35.7 39.1 36.9 48.8 29.8	
17.5 + 62.4 40.7 35.7 39.1 36.9 48.8 29.8	
22.5 + 62.4 40.7 35.7 39.1 36.9 48.8 38.5	
27.5 + 62.4 58.9 37.5 39.1 36.9 51.1 38.5	
32.5 + 62.4 58.9 37.5 39.1 36.9 51.1 38.5	

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Block Stock Table (m3/ha)

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Grades: MOF Computerized FIZ: B Computerized Decay PSYU: Nootka

Region: 2 - West Coast

Cruised by: AZMETH Version: 2015.00 IFS build 5947 District: 04 - South Island

BSTCK- 1 , p40

Compiled by: F Warren and Associates Ltd

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [All Treatment Units: 12.3]

Computerized Waste

Computerized Breakage

				,					•		
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization		45.5									
	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
_	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									1.8		
25			2.1	2.8				4.9			
30			2.4	4.7				7.0			
35			2.4	2.4			4.1	8.8			
40		6.0		26.5	7.8	5.2		45.5	13.0		
45		2.1		40.1				42.2			
50		14.4	11.9	8.7				35.0			
55		7.9	4.0	9.2				21.1			
60		6.6	14.3	30.3				51.1			
65		25.4	12.0					37.5			
70 75		23.7 20.1	14.0					37.7			
80		21.3						20.1			
85		18.9	3.8					22.7			
90		13.0	3.0					13.0			
95		30.8	5.3	11.0				47.0			
100		8.4						8.4			
105		7.3						7.3			
110		24.0	9.4					33.3			
115											
120											
125											
130											
135		10.0						10.0			
140		10.0						10.0			
145 150											
175											
200											
225											
250											
275											
Total		240.0	81.5	135.5	7.8	5.2	4.1	474.1			
Dead P				1.8		13.0			14.8		
					s for 7 Le						
17.5 +		240.0	81.5	135.5	7.8	5.2	4.1	474.1	14.8		
22.5 +		240.0	81.5	135.5	7.8	5.2	4.1	474.1	13.0		
27.5 +		240.0	79.4	132.8	7.8	5.2	4.1	469.2	13.0		
32.5 +		240.0	77.0	128.1	7.8	5.2	4.1	462.2	13.0		
37.5 +		240.0	74.7	125.7	7.8	5.2		453.4	13.0		
42.5 +		234.0 231.9	74.7 74.7	99.2 59.1				407.9			
47.5 +		231.9	/4./	39.1				365.7			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Block Stock Table (m3/ha)

FIZ: B

PSYU: Nootka

28-Sep-2015 07:24:47PM

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized

Filename: comm_for_blk1_typed_lf.ccp

Licence Number: COMM CP: PRE

Computerized Decay Computerized Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

BSTCK- 2 , p41

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [Block: 11.2]

BIOCK · (F	1, 001.01	OCK I, FIC	JCS III DI	och. 10,	105. [1	DIOCK · II	1.2]				
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH Stump Ht Top Dia	cm (M) cm (M) cm (M)	17.5 30.0 15.0									
Log Len DBH Class	m m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
5 10 15											
20									1.9		
25 30			2.2 2.6	2.9 5.1				5.1 7.7			
35		6.0	2.6	0.8	0 1	F 7	1.3	4.7	12 4		
40 45		6.2 0.7	12.0	28.4 43.1	8.1	5.7		48.3	13.4		
50 55		15.4	13.0	9.5 10.1				37.9 23.2			
60 65		6.8 22.1	15.5 13.2	32.0				54.2 35.3			
70 75		25.1 16.2	14.7					39.8 16.2			
80		23.0						23.0			
85 90		19.5 14.0	4.2					23.7 14.0			
95 100		33.0 9.2	5.8	12.0				50.8 9.2			
105		8.0						8.0			
110 115		26.3	10.3					36.6			
120 125											
130 135											
140 145		11.0						11.0			
150 175											
200 225											
250 275											
Total Dead P		245.2	88.3	143.9 1.9	8.1	5.7 13.4	1.3	492.6	15.3		
Dead F			Tot		s for 7 Le				13.3		
17.5 + 22.5 +		245.2 245.2	88.3 88.3	143.9 143.9	8.1 8.1	5.7 5.7	1.3 1.3	492.6 492.6	15.3 13.4		
27.5 +		245.2	86.2	143.9	8.1	5.7	1.3	492.6	13.4		
32.5 +		245.2	83.6	135.9	8.1	5.7	1.3	479.8	13.4		
37.5 + 42.5 +		245.2 239.1	81.0 81.0	135.1 106.7	8.1	5.7		475.1 426.8	13.4		
47.5 +		239.1	81.0	63.6				383.0			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Block Stock Table (m3/ha)

28-Sep-2015 07:24:47PM

Grades: MOF Computerized FIZ: B Computerized Decay

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

BSTCK- 3 , p42

Version: 2015.00 IFS build 5947

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [RW outside: 1.1]

Computerized Waste

Computerized Breakage

BIOCK · (I	1) - 001.61	LOCK I, FIC	JCS III DIC	JCK. 10,	105. [1	.w outside	. 1.1	1			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	17.5 30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15											
20									1.2		
25			1.4	1.9				3.3			
30				10 7			20.0	F0 7			
35		4 1		18.7	гэ		32.0	50.7	0 0		
40 45		4.1 16.8		7.2	5.3			16.5 26.3	8.8		
50			1 /	9.5				6.1			
55		4.7	1.4					0.1			
60		4.4	1.9	13.3				19.7			
65		58.9	1.9	13.3				58.9			
70		9.4	6.9					16.3			
75		59.8	0.5					59.8			
80		4.5						4.5			
85		12.8						12.8			
90		3.5						3.5			
95		8.0						8.0			
100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150 175											
200											
225											
250											
275											
Total		186.9	11.6	50.6	5.3		32.0	286.5			
Dead P				1.2		8.8			10.0		
			Tota	al Volume	s for 7 Le						
17.5 +		186.9	11.6	50.6	5.3		32.0	286.5	10.0		
22.5 +		186.9	11.6	50.6	5.3		32.0	286.5	8.8		
27.5 +		186.9	10.2	48.7	5.3		32.0	283.2	8.8		
32.5 +		186.9	10.2	48.7	5.3		32.0	283.2	8.8		
37.5 +		186.9	10.2	30.0	5.3			232.4	8.8		
42.5 +		182.9	10.2	22.8				215.9			
47.5 +		166.1	10.2	13.3				189.6			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Block Basal Area Table (m2/ha)

BBASL- 1 , p43

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Average Line Method FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Licence Number: COMM CP: PRE Computerized Waste Region: 2 - West Coast Project: AVCF_NOVA Computerized Breakage District: 04 - South Island

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [All Treatment Units: 12.3]

	F	C	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits	17 -	17 5	17 5	17 5	17 5	17 5	17 5	17 5	17 5	17 5
Min DBH cm (M)	17.5 30.0									
Stump Ht cm (M)										
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH Class										
5										
10										
15										
20								0.8		0.9
25		0.8	0.8				1.6	0.0		0.5
30		0.9	0.9				1.7			
35		0.9	0.5			0.5	1.9			
40	0.8	0.5	3.3	0.8	0.9	0.5	5.8	1.6		
45	0.5		4.2	0.0	0.5		4.7	1.0		
50	1.7	2.5	0.9				5.0			
55	0.9	0.9	0.9				2.6			
60	0.8	3.4	2.5				6.7			
65	3.4	2.6					6.0			
70	2.5	2.5					4.9			
75	2.6						2.6			
80	2.5						2.5			
85	2.4	0.9					3.3			
90	1.7						1.7			
95	3.3	0.9	0.9				5.0			
100	0.9						0.9			
105	0.9						0.9			
110	2.6	1.7					4.3			
115										
120										
125										
130										
135	0.9						0.9			
140 145	0.9						0.9			
150										
175										
200										
225										
250										
275										
Total	28.3	17.8	14.7	0.8	0.9	0.5	63.0			
Dead P			0.8		1.6			2.4		
Dead U										
Live U			0.9							0.9
		Avei	rage Basal	Area (m2	2) at 5 Le	evels				
12.5 +	28.3	17.8	14.7	0.8	0.9	0.5	63.0	2.4		0.9
17.5 +	28.3	17.8	14.7	0.8	0.9	0.5	63.0	2.4		0.9
22.5 +	28.3	17.8	14.7	0.8	0.9	0.5	63.0	1.6		
27.5 +	28.3	17.0	13.9	0.8	0.9	0.5	61.3	1.6		
32.5 +	28.3	16.1	13.1	0.8	0.9	0.5	59.6	1.6		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

Block Basal Area Table (m2/ha)

Grades: MOF Computerized Average Line Method FIZ: B

Computerized Decay

Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast

Cruised by: AZMETH District: 04 - South Island Version: 2015.00 IFS build 5947

BBASL- 2 , p44

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

Block: (M) - 001:Block 1, Plots in Block: 16, TUS: [Block: 11.2]

	,										
		F	C	Н	В	Y	PW	Total	DP	DU	LU
Utilization		15.5	15.5	15.5	15.5	18.5	15.5	15.5	15.5	18.5	15 5
Min DBH	cm (M)	17.5 30.0									
Stump Ht Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (FI)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	111	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									0.8		0.9
25			0.8	0.8				1.7			
30 35			0.9	0.9			0.2	1.9 1.3			
40		0.8	0.9	3.5	0.8	0.9	0.2	6.2	1.7		
45		0.2		4.5	0.0	0.5		4.7	1.7		
50		1.8	2.7	0.9				5.4			
55		0.9	0.9	0.9				2.8			
60		0.8	3.7	2.6				7.1			
65		2.8	2.8					5.7			
70		2.6	2.6					5.2			
75		2.0						2.0			
80		2.7	0 0					2.7			
85 90		2.5 1.8	0.9					3.4 1.8			
95		3.5	0.9	0.9				5.4			
100		0.9	0.5	0.5				0.9			
105		0.9						0.9			
110		2.8	1.9					4.7			
115											
120											
125											
130											
135 140		0.9						0.9			
145		0.9						0.9			
150											
175											
200											
225											
250											
275		00.0	10.2	15.4	0 0	0 0	0 0	64.0			
Total		28.2	19.3	15.4	0.8	0.9	0.2	64.8	2.5		
Dead P Dead U				0.8		1.7			2.5		
Live U				0.9							0.9
LIVE O			Ave		L Area (m2	2) at 5 Le	vels				0.5
12.5 +		28.2	19.3	15.4	0.8	0.9	0.2	64.8	2.5		0.9
17.5 +		28.2	19.3	15.4	0.8	0.9	0.2	64.8	2.5		0.9
22.5 +		28.2	19.3	15.4	0.8	0.9	0.2	64.8	1.7		
27.5 +		28.2	18.4	14.6	0.8	0.9	0.2	63.1	1.7		
32.5 +		28.2	17.5	13.6	0.8	0.9	0.2	61.2	1.7		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Block Basal Area Table (m2/ha)

BBASL- 3 , p45

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

Average Line Method Grades: MOF Computerized

Block: (M) - 001:Block 1, Plots in Block: 16, TUs: [RW outside: 1.1]

Grades: MOF Computerized FIZ: B
Computerized Decay PSYU: Nootka

Licence Number: COMM CP: PRE Computerized Waste Region: 2 - West Coast
Project: AVCF NOVA Computerized Breakage District: 04 - South Isla

Project: AVCF_NOVA Computerized Breakage District: 04 - South Island Version: 2015.00 IFS build 5947

BIOCK · (N	I) - 001.BI	OCK I, PIC	ots in Bic	OCK. 16,	TUS. [F	w outside	. 1.1	1			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio											
Min DBH	cm (M)	17.5	17.5	17.5	17.5 30.0	17.5	17.5	17.5 30.0	17.5 30.0	17.5	17.5 30.0
Stump Ht Top Dia	cm (M)	30.0 15.0	30.0 15.0	30.0 15.0	15.0	30.0 15.0	30.0 15.0	15.0	15.0	30.0 15.0	15.0
Log Len	m (M)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									0.5		
25			0.5	0.5				1.1			
30 35				4.0			4.0	8.0			
40		0.5		1.1	0.5		4.0	2.2	1.1		
45		4.0		1.1	0.5			5.1	1.1		
50		0.5	0.5	1.1				1.1			
55											
60		0.5	0.5	1.1				2.2			
65		9.6						9.6			
70		1.1	1.1					2.2			
75		9.0						9.0			
80		0.5						0.5			
85 90		1.6						1.6 0.5			
95		0.5 1.1						1.1			
100		1.1						1.1			
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275											
Total		29.2	2.7	7.8	0.5		4.0	44.2			
Dead P				0.5		1.1			1.6		
Dead U Live U											
Tive 0			Δινει	rage Basal	L Area (m2) at 5 Te	evels				
12.5 +		29.2	2.7	7.8	0.5	, ас 5 дс	4.0	44.2	1.6		
17.5 +		29.2	2.7	7.8	0.5		4.0	44.2	1.6		
22.5 +		29.2	2.7	7.8	0.5		4.0	44.2	1.1		
27.5 +		29.2	2.2	7.3	0.5		4.0	43.1	1.1		
32.5 +		29.2	2.2	7.3	0.5		4.0	43.1	1.1		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

TSTND- 1 , p46 Type Stand Table (stems/ha) 28-Sep-2015 07:24:47PM

Computerized Waste

Computerized Breakage

Grades: MOF Computerized Computerized Decay

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [Block: 4.7]

Type I (F	1) (11)	JJI, FIOUS	III IYPC:	J, 10B.	DIOCK .	1.7					
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH Stump Ht Top Dia Log Len	cm (M) cm (M) cm (M) m	17.5 30.0 15.0 10.0									
DBH Class 5 10 15											
20 25 30			27. 5	24.0				62.2			85.5
35			27.5 22.4	34.8				22.4			
40 45				37.5 44.8		19.3		56.9 44.8			
50		10.6	22.4	10.6				43.7			
55		9.6	9.1 23.0	9.3				28.0 30.9			
60 65			19.1	7.9				19.1			
70 75		6.0	6.2					12.2			
80		9.0						9.0			
85 90		3.7	4.1					4.1 3.7			
95		6.3	3.2	3.2				12.7			
100		2.8	3.2	3.2				2.8			
105		2.7						2.7			
110 115 120		7.2	4.9					12.1			
125 130 135											
140 145 150		1.5						1.5			
175 200 225											
250 275											
Total Dead P		59.4	141.9	148.1		19.3		368.7			
Dead U Live U			Δνε	85.5 rage DBH(rm) at 5 I	evels					85.5
12.5 +		82.1	56.8		, ac 5 1	38.5		56.4			18.3
17.5 +		82.1	56.8	44.0		38.5		56.4			18.3
22.5 +		82.1	56.8	44.0		38.5		56.4			
27.5 + 32.5 +		82.1 82.1	56.8 61.3	44.0 47.7		38.5 38.5		56.4 60.4			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

TSTND- 2 , p47 Type Stand Table (stems/ha) 28-Sep-2015 07:24:47PM

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

FIZ: B PSYU: Nootka

> Region: 2 - West Coast District: 04 - South Island

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 2 (M):FH (C) 841. Plots in Type: 6. Tils: [All Treatment linits: 6.6]

Type 2	(M):FH (C)	841, Plots	in Type:	6, TUs:	[All Trea	tment Unit	s: 6.6]			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
	tion Limits		17 5	17 5	17 5	17 5	17 5	17 5	17 5	17 5	17 5
Min DB	H cm (M) Ht cm (M)	17.5 30.0									
Top Di		15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Le		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5 10											
15											
20									38.8		
25			35.8	34.3				70.1			
30											
35		10.0		22.0	10 5			40.2	25.0		
40 45		12.8		23.0 19.5	12.5			48.3 19.5	25.8		
50		7.2	8.2	19.5				15.4			
55											
60		5.0	5.6	10.5				21.1			
65 70		13.3 7.9	0 0					13.3			
70 75		6.9	8.2					16.1 6.9			
80		3.1						3.1			
85		8.1						8.1			
90		2.4						2.4			
95 100		4.2						4.2			
105											
110											
115											
120											
125 130											
135											
140											
145											
150 175											
200											
225											
250											
275 Total		71.0	57.8	87.3	12.5			228.6			
Dead P		71.0	57.6	38.8	12.5	25.8		220.0	64.5		
Dead U											
Live U						_					
12.5 +		67.6			cm) at 5	Levels		FO 1	20.0		
12.5 + 17.5 +		67.6 67.6	40.7 40.7	39.1 39.1	39.1 39.1			50.1 50.1	29.8 29.8		
22.5 +		67.6	40.7	39.1	39.1			50.1	38.5		
27.5 +		67.6	58.9	46.5	39.1			58.1	38.5		
32.5 +		67.6	58.9	46.5	39.1			58.1	38.5		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Stand Table (stems/ha) FIZ: B

PSYU: Nootka

Grades: MOF Computerized

Computerized Decay

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

TSTND- 3 , p48

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Type 2	(M):FH (3) 841.	Plots	in Type:	6.	TUs:	Γ	Block	:	6.2	1

-21-0 - ()	(-/	,	71	.,							
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization		15.5	15.5	15.5	15.5	15.5	15.5	15 5	18.5	15.5	15.5
	cm (M)	17.5 30.0									
Stump Ht Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (M)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20									38.8		
25			35.8	34.3				70.1			
30											
35 40		12.8		23.0	12.5			48.3	25.8		
45		12.0		19.5	12.5			19.5	25.6		
50		7.2	8.2	19.5				15.4			
55			0.2					13.1			
60		5.0	5.6	10.5				21.1			
65		13.3						13.3			
70		7.9	8.2					16.1			
75		6.9						6.9			
80		3.1						3.1			
85 90		8.1 2.4						8.1 2.4			
95		4.2						4.2			
100		1.2						1.2			
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275		71 0	F.7. 0	07.2	10 5			220 6			
Total Dead P		71.0	57.8	87.3 38.8	12.5	25.8		228.6	64.5		
Dead U				30.0		25.6			04.5		
Live U											
			Ave	erage DBH(cm) at 5	Levels					
12.5 +		67.6	40.7	39.1	39.1			50.1	29.8		
17.5 +		67.6	40.7	39.1	39.1			50.1	29.8		
22.5 +		67.6	40.7	39.1	39.1			50.1	38.5		
27.5 +		67.6	58.9	46.5	39.1			58.1	38.5		
32.5 +		67.6	58.9	46.5	39.1			58.1	38.5		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Stand Table (stems/ha)

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Grades: MOF Computerized Computerized Decay

Computerized Waste

Computerized Breakage

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

TSTND- 4 , p49

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [RW outside : 0.4]

Type Z (In	1).FH (C)	841, Plots	In Type.	b, IUS. [RW OULS	tae · 0.4	1				
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio											
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht Top Dia	cm (M)	30.0 15.0									
Log Len	m (M)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	111	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15									20.0		
20 25			35.8	34.3				70.1	38.8		
30			33.6	34.3				70.1			
35											
40		12.8		23.0	12.5			48.3	25.8		
45				19.5				19.5			
50		7.2	8.2					15.4			
55		F 0		10 5				01 1			
60 65		5.0 13.3	5.6	10.5				21.1 13.3			
70		7.9	8.2					16.1			
75		6.9	0.2					6.9			
80		3.1						3.1			
85		8.1						8.1			
90		2.4						2.4			
95 100		4.2						4.2			
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275 Total		71.0	57.8	87.3	12.5			228.6			
Dead P		71.0	37.0	38.8	12.5	25.8		220.0	64.5		
Dead U				30.0		23.0			01.5		
Live U											
10 -				age DBH(c		Levels					
12.5 +		67.6	40.7	39.1	39.1			50.1	29.8		
17.5 + 22.5 +		67.6 67.6	40.7 40.7	39.1 39.1	39.1 39.1			50.1 50.1	29.8 38.5		
27.5 +		67.6	58.9	46.5	39.1			58.1	38.5		
32.5 +		67.6	58.9	46.5	39.1			58.1	38.5		

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

Type Stand Table (stems/ha) 28-Sep-2015 07:24:47PM

Average Line Method Grades: MOF Computerized

Grades: MOF Computerized
Computerized Decay

FIZ: B PSYU: Nootka

Computerized Waste
Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

TSTND- 5 , p50

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [All Treatment Units: 1.0]

-21-0 0 (11	-, - (-,	_,	11	_,				•			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio											
Min DBH	cm (M)	17.5	17.5	17.5		17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0 15.0									
Top Dia Log Len	m (M)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20											
25											
30				E0.6			FO 4	101 1			
35 40				72.6			58.4	131.1			
45		43.4						43.4			
50		43.4						43.4			
55											
60											
65		37.0						37.0			
70											
75		28.9						28.9			
80											
85											
90 95											
100											
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275											
Total		109.3		72.6			58.4	240.4			
Dead P Dead U											
Live U											
DIVC 0			τΑ	rerage DBI	H(cm) at 5	Levels					
12.5 +		60.3	27.1	33.1	_,,		36.9	48.1			
17.5 +		60.3		33.1			36.9	48.1			
22.5 +		60.3		33.1			36.9	48.1			
27.5 +		60.3		33.1			36.9	48.1			
32.5 +		60.3		33.1			36.9	48.1			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Stand Table (stems/ha) 28-Sep-2015 07:24:47PM TSTND- 6 , p51

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Grades: MOF Computerized

Computerized Breakage

Computerized Waste

FIZ: B Computerized Decay PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [Block: 0.3]

		п	a		D	37	DM	mata 1	DD	DII	T TT
Utilization	Limits	F	С	Н	В	Y	PW	Total	DP	DU	LU
Min DBH o	em (M) em (M) em (M) m	17.5 30.0 15.0 10.0									
Class 5 10 15 20											
25 30											
35 40				72.6			58.4	131.1			
45 50 55 60		43.4						43.4			
65 70		37.0						37.0			
75		28.9						28.9			
80 85 90											
95 100 105											
110 115											
120											
125 130 135											
140 145											
150 175 200											
225 250											
275 Total		109.3		72.6			58.4	240.4			
Dead P Dead U Live U											
			Aver	age DBH(c	m) at 5 I	Levels					
12.5 + 17.5 + 22.5 +		60.3 60.3 60.3		33.1 33.1 33.1			36.9 36.9 36.9	48.1 48.1 48.1			
27.5 + 32.5 +		60.3		33.1			36.9 36.9	48.1			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

TSTND- 7 , p52 Type Stand Table (stems/ha) 28-Sep-2015 07:24:47PM

Grades: MOF Computerized

Computerized Waste

Computerized Breakage

Computerized Decay

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [RW outside : 0.7]

-71-0 0 (1	-, - (-,	_,	21	_,,			•				
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio											
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0 15.0									
Top Dia Log Len	cm (M) m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class											
5											
10											
15											
20											
25											
30				E0 (F 0 4	101 1			
35 40				72.6			58.4	131.1			
45		43.4						43.4			
50		43.4						43.4			
55											
60											
65		37.0						37.0			
70											
75		28.9						28.9			
80											
85											
90 95											
100											
105											
110											
115											
120											
125											
130											
135 140											
145											
150											
175											
200											
225											
250											
275				=				0.4.04			
Total		109.3		72.6			58.4	240.4			
Dead P Dead U											
Live U											
			Αv	erage DBH	(cm) at 5	Levels					
12.5 +		60.3		33.1	,		36.9	48.1			
17.5 +		60.3		33.1			36.9	48.1			
22.5 +		60.3		33.1			36.9	48.1			
27.5 +		60.3		33.1			36.9	48.1			
32.5 +		60.3		33.1			36.9	48.1			

Licence Number: COMM CP: PRE

TSTCK- 1 , p53

Type Stock Table (m3/ha) Average Line Method

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:24:47PM

Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Computerized Waste Computerized Breakage Cruised by: AZMETH Version: 2015.00 IFS build 5947

Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [Block: 4.7]

Type I (F	1) (11)	JJI, FIOUS	III IYPC	J, 105.	BIOCK .	1.7					
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Min DBH	cm (M)	17.5 30.0	17.5 30.0 15.0 10.0	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0		30.0	30.0	30.0	30.0
	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10 15											
20											
25											
30			6.2	12.2				18.4			
35			6.2	12.2				6.2			
40			0.2	41.7		13.5		55.2			
45				68.1		13.5		68.1			
50		19.6	25.8	22.7				68.1			
55		20.7	10.4	24.1				55.2			
60			29.9	27.9				57.8			
65			31.5					31.5			
70		25.8	10.2					36.0			
75											
80		38.3						38.3			
85			9.9					9.9			
90		20.8						20.8			
95		49.5	13.8	28.7				92.0			
100 105		22.0 19.1						22.0 19.1			
110		62.8	24.5					87.3			
115		02.0	24.5					07.3			
120											
125											
130											
135											
140		26.1						26.1			
145											
150											
175											
200											
225											
250											
275		204 6	160 4	005 3		12 5		711 0			
Total		304.6	168.4	225.3		13.5		711.8			
Dead P			Tot	al Volumes	7 for 7 Ta	orrol a					
17.5 +		304.6	168.4	225.3	2 TOT / Te	13.5		711.8			
22.5 +		304.6	168.4	225.3		13.5		711.8			
27.5 +		304.6	168.4	225.3		13.5		711.8			
32.5 +		304.6	162.2	213.1		13.5		693.4			
37.5 +		304.6	156.0	213.1		13.5		687.3			
42.5 +		304.6	156.0	171.4				632.1			
47.5 +		304.6	156.0	103.3				564.0			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Average Line Method

Project: AVCF_NOVA

Type Stock Table (m3/ha)

FIZ: B

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [All Treatment Units: 6.6]

Type Z (F	1) • 111 (C)	OTI, FIOUS	III lybe.	0, 105.	[AII IIec	acment onit	. 0.0	,			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio	n Limits										
Log Len	cm (M) cm (M) cm (M)	17.5 30.0 15.0 10.0									
DBH Class 5 10 15											
20 25 30			3.9	5.2				9.1	3.3		
35 40 45		11.2	2.0	19.7 26.2	14.6			45.5 26.2	24.3		
50 55 60		12.9 12.2	3.9 5.3	36.6				16.8 54.1			
65 70 75		36.5 25.9 25.5	18.8					36.5 44.7 25.5			
80 85 90		12.4 35.3 9.5						12.4 35.3 9.5			
95 100 105		22.1						22.1			
110 115 120											
125 130 135											
140 145 150											
175 200 225											
250 275		203.5	22.0	07.7	14.6			227 0			
Total Dead P		203.5	32.0 Tot	87.7 3.3 al Volum	14.6 es for 7 I	24.3 Levels		337.8	27.6		
17.5 + 22.5 +		203.5	32.0 32.0	87.7 87.7	14.6 14.6			337.8 337.8	27.6 24.3		
27.5 + 32.5 + 37.5 +		203.5 203.5 203.5	28.0 28.0 28.0	82.5 82.5 82.5	14.6 14.6 14.6			328.6 328.6 328.6	24.3 24.3 24.3		
42.5 + 47.5 +		192.3 192.3	28.0	62.8	21.0			283.2 256.9	21.0		

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Average Line Method

Project: AVCF_NOVA

TSTCK- 3 , p55

Type Stock Table (m3/ha)

FIZ: B

FIZ: B PSYU: Nootka

District: 04 - South Island

Region: 2 - West Coast

28-Sep-2015 07:24:47PM
Filename: comm_for_blk1_typed_lf.ccp
Compiled by: F Warren and Associates Ltd
Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [Block: 6.2]

		F	C	H	В	Y	PW	Total	DP	DU	LU
tilizatio		17 5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Min DBH Stump Ht	cm (M)	17.5 30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
Class											
5											
10											
15											
20									3.3		
25			3.9	5.2				9.1			
30											
35 40		11.2		10 7	14.6			4F F	24.3		
45		11.2		19.7 26.2	14.6			45.5 26.2	24.3		
50		12.9	3.9	20.2				16.8			
55		12.5	3.9					10.0			
60		12.2	5.3	36.6				54.1			
65		36.5						36.5			
70		25.9	18.8					44.7			
75		25.5						25.5			
80		12.4						12.4			
85		35.3						35.3			
90		9.5						9.5			
95		22.1						22.1			
100 105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225 250											
275											
Cotal		203.5	32.0	87.7	14.6			337.8			
Dead P		203.3	32.0	3.3	11.0	24.3		337.0	27.6		
			Tota		for 7 Le						
17.5 +		203.5	32.0	87.7	14.6			337.8	27.6		
22.5 +		203.5	32.0	87.7	14.6			337.8	24.3		
27.5 +		203.5	28.0	82.5	14.6			328.6	24.3		
32.5 +		203.5	28.0	82.5	14.6			328.6	24.3		
37.5 +		203.5	28.0	82.5	14.6			328.6	24.3		
12.5 +		192.3 192.3	28.0 28.0	62.8 36.6				283.2 256.9			
17.5 +											

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Average Line Method

Project: AVCF_NOVA

TSTCK- 4 , p56

Type Stock Table (m3/ha)

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Cruised by: AZMETH
Version: 2015.00 IFS build 5947

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [RW outside : 0.4]

-21 (, (-,	,	7	,			•				
	F	С	Н	В	Y	PW	Total	DP	DU	I
Utilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15								2 2		
20 25		3.9	5.2				0 1	3.3		
30		3.9	5.4				9.1			
35										
40	11.2		19.7	14.6			45.5	24.3		
45	11.2		26.2	14.0			26.2	24.3		
50	12.9	3.9	20.2				16.8			
55	12.9	3.9					10.0			
60	12.2	5.3	36.6				54.1			
65	36.5	5.5	30.0				36.5			
70	25.9	18.8					44.7			
75	25.5	10.0					25.5			
80	12.4						12.4			
85	35.3						35.3			
90	9.5						9.5			
95	22.1						22.1			
100										
105										
110										
115										
120										
125										
130										
135										
140										
145										
150										
175										
200										
225										
250										
275	002 5	20.0	05.5	14.6			225 0			
otal	203.5	32.0	87.7	14.6	0.4.2		337.8	0.0		
ead P		m - t-	3.3	f 7 T	24.3			27.6		
7 -	202 5			es for 7 L	evels		227 0	27 6		
7.5 +	203.5 203.5	32.0 32.0	87.7 87.7	14.6 14.6			337.8 337.8	27.6		
2.5 +								24.3		
7.5 + 2.5 +	203.5 203.5	28.0 28.0	82.5 82.5	14.6 14.6			328.6 328.6	24.3 24.3		
2.5 + 7.5 +	203.5	28.0	82.5	14.6			328.6	24.3		
7.5 + 2.5 +	192.3	28.0	62.8	14.0			283.2	44.3		
7.5 +	192.3	28.0	36.6				256.9			
7.5 T	134.3	20.0	30.0				250.9			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Average Line Method

Project: AVCF_NOVA

TSTCK- 5 , p57

Type Stock Table (m3/ha)

FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Type 3	(M):F	(P)	831	Plots	in	Tyme:	1	TIIG:	[[[[]	Treatment	IInits	:	1 0	1

	F	C	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits	!									
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M) Top Dia cm (M)	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH	10.0	20.0	20.0	10.0	10.0	10.0	20.0	10.0	10.0	10.0
Class										
5										
10 15										
20										
25										
30										
35			29.5			50.3	79.7			
40 45	26.3						26.3			
50	20.5						20.5			
55										
60	71 7						71 7			
65 70	71.7						71.7			
75	79.4						79.4			
80										
85										
90 95										
100										
105										
110										
115 120										
125										
130										
135										
140 145										
150										
175										
200										
225										
250 275										
Total	177.5		29.5			50.3	257.2			
Dead P										
17 .	177 -	Total		s for 7 Le	evels	F0 3	257 2			
17.5 + 22.5 +	177.5 177.5		29.5 29.5			50.3 50.3	257.2 257.2			
27.5 +	177.5		29.5			50.3	257.2			
32.5 +	177.5		29.5			50.3	257.2			
37.5 +	177.5						177.5			
42.5 + 47.5 +	177.5 151.1						177.5 151.1			
T/.5 T	131.1						131.1			

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

TSTCK- 6 , p58

Type Stock Table (m3/ha) Average Line Method Computerized Decay

Computerized Waste

Computerized Breakage

Grades: MOF Computerized

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island

28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [Block: 0.3]

-21 (., - (-,	_,	71	_,							
		F	C	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio		17 5	17 5	17 5	17 5	17 5	17 5	15 5	17 5	15 5	17 (
Min DBH	cm (M)	17.5 30.0									
Stump Ht Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH	Ш	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
Class											
5											
10											
15											
20											
25											
30											
35				29.5			50.3	79.7			
40											
45		26.3						26.3			
50											
55											
60 65		71.7						71.7			
70		/1./						/1./			
75		79.4						79.4			
80		,,,,						,,,,,			
85											
90											
95											
100											
105											
110											
115 120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275		100 5		00 5			F0 2	055.0			
Total		177.5		29.5			50.3	257.2			
Dead P			Tot	al Volumes	for 7 1	Levels					
17.5 +		177.5	100	29.5	, TOT / 1	TC A C T P	50.3	257.2			
22.5 +		177.5		29.5			50.3	257.2			
27.5 +		177.5		29.5			50.3	257.2			
32.5 +		177.5		29.5			50.3	257.2			
37.5 +		177.5						177.5			
42.5 +		177.5						177.5			
47.5 +		151.1						151.1			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

TSTCK- 7 , p59

Grades: MOF Computerized Average Line Method

Computerized Decay Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island

Type Stock Table (m3/ha)

FIZ: B

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:24:47PM

Version: 2015.00 IFS build 5947

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [RW outside : 0.7]

		F	С	Н	В	Y	PW	Total	DP	DU	LU
Wtilizatio Min DBH Stump Ht Top Dia Log Len DBH Class	cm (M)	17.5 30.0 15.0 10.0									
5 10 15											
20 25 30 35				29.5			50.3	79.7			
40				49.5			50.5				
45 50 55 60		26.3						26.3			
65		71.7						71.7			
70 75		79.4						79.4			
80 85 90											
95 100 105											
110 115 120											
125 130 135											
140 145 150											
175 200 225 250											
275											
Total Dead P		177.5		29.5			50.3	257.2			
			Tota	al Volumes	s for 7 L	evels					
17.5 + 22.5 + 27.5 +		177.5 177.5 177.5		29.5 29.5 29.5			50.3 50.3 50.3	257.2 257.2 257.2			
32.5 + 37.5 + 42.5 +		177.5 177.5 177.5		29.5			50.3	257.2 177.5 177.5			
47.5 +		151.1						151.1			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Type 1 (M):CF (H) 951, Plots in Type: 9, TUs: [Block: 4.7]

-11 (, (,	,	71	,							
		F	C	H	В	Y	PW	Total	DP	DU	LU
Utilization			17 -	15 5	15 5	17 5	17 5	17 5	17 5	15 5	17 5
Min DBH Stump Ht	cm (M)	17.5 30.0									
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (11)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15 20											2.3
25											4.3
30			2.2	2.3				4.5			
35			2.3					2.3			
40				4.5		2.2		6.8			
45				6.8				6.8			
50		2.3	4.5	2.3				9.0			
55 60		2.3	2.3 6.8	2.3				6.8 9.0			
65			6.8	۷.3				6.8			
70		2.3	2.3					4.5			
75											
80		4.5						4.5			
85			2.3					2.3			
90 95		2.2 4.5	2.3	2.3				2.2 9.0			
100		2.3	2.3	2.3				2.3			
105		2.3						2.3			
110		6.8	4.5					11.3			
115											
120											
125											
130 135											
140		2.3						2.3			
145											
150											
175											
200											
225 250											
275											
Total		31.5	36.0	22.5		2.2		92.3			
Dead P											
Dead U											
Live U			_	2.3		0) : =	-				2.3
10 E .		21 Г			al Area (m2) at 5 L	evels	02.2			2 2
12.5 + 17.5 +		31.5 31.5	36.0 36.0	22.5 22.5		2.2 2.2		92.3 92.3			2.3
22.5 +		31.5	36.0	22.5		2.2		92.3			2.3
27.5 +		31.5	36.0	22.5		2.2		92.3			
32.5 +		31.5	33.8	20.3		2.2		87.8			

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

TBASL- 1 , p60

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type Basal Area Table (m2/ha)

Grades: MOF Computerized

FIZ: B PSYU: Nootka 28-Sep-2015 07:24:47PM Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

TBASL- 2 , p61

Licence Number: COMM CP: PRE

Average Line Method

Computerized Decay
Computerized Waste

Cruised by: AZMETH
Version: 2015.00 IFS build 5947

Project: AVCF_NOVA Computerized Breakage

Region: 2 - West Coast Cruised by: 2 District: 04 - South Island Version: 201

Tyme 2	(M):FH	(C)	241	Dlote	in	Tyme:	6	TIIc:	ΓΓΔ]	Treatment	IInite	•	6 6	1
Type Z	(M) • F II	(C)	O-II,	PIULS	TII	TAbe.	ο,	105.	「HTT	II eatment	OHILLS	•	0.0	J

	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Limits	г	C	п	Б	ī	PW	IULAI	DP	Ъ0	ПО
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH Class										
5										
10										
15										
20								1.5		
25		1.5	1.5				3.0			
30										
35 40	1.5		3.0	1.5			6.0	3.0		
45	1.5		3.0	1.5			3.0	3.0		
50	1.5	1.5	3.0				3.0			
55		1.5					3.0			
60	1.5	1.5	3.0				6.0			
65	4.5						4.5			
70	3.0	3.0					6.0			
75	3.0						3.0			
80 85	1.5 4.5						1.5 4.5			
90	1.5						1.5			
95	3.0						3.0			
100										
105										
110										
115										
120 125										
130										
135										
140										
145										
150										
175										
200 225										
250										
275										
Total	25.5	7.5	10.5	1.5			45.0			
Dead P			1.5		3.0			4.5		
Dead U										
Live U		_								
10 5 .	۵۲ ۲		rage Basal		2) at 5 Le	evels	45.0	4 5		
12.5 + 17.5 +	25.5 25.5	7.5 7.5	10.5 10.5	1.5 1.5			45.0 45.0	4.5 4.5		
22.5 +	25.5	7.5	10.5	1.5			45.0	3.0		
27.5 +	25.5	6.0	9.0	1.5			42.0	3.0		
32.5 +	25.5	6.0	9.0	1.5			42.0	3.0		

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

Grades: MOF Computerized FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

TBASL- 3 , p62

Version: 2015.00 IFS build 5947

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [Block: 6.2]

-71 (, (,	,	71	.,							
	F	С	Н	В	Y	PW	Total	DP	DU	L
Itilization Limits										
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5 10										
15										
20								1.5		
25		1.5	1.5				3.0	1.5		
30		1.5	1.5				3.0			
35										
40	1.5		3.0	1.5			6.0	3.0		
45	1.5		3.0	1.5			3.0	3.0		
50	1.5	1.5	3.0				3.0			
55	1.0	1.5					3.0			
60	1.5	1.5	3.0				6.0			
65	4.5						4.5			
70	3.0	3.0					6.0			
75	3.0						3.0			
80	1.5						1.5			
85	4.5						4.5			
90	1.5						1.5			
95	3.0						3.0			
100										
105										
110										
115										
120										
125										
130										
135 140										
145										
150										
175										
200										
225										
250										
275										
otal	25.5	7.5	10.5	1.5			45.0			
ead P			1.5		3.0			4.5		
ead U										
ive U										
					n2) at 5 Le	evels				
2.5 +	25.5	7.5	10.5	1.5			45.0	4.5		
.7.5 +	25.5	7.5	10.5	1.5			45.0	4.5		
22.5 +	25.5	7.5	10.5	1.5			45.0	3.0		
27.5 +	25.5	6.0	9.0	1.5			42.0	3.0		
32.5 +	25.5	6.0	9.0	1.5			42.0	3.0		

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

PSYU: Nootka

TBASL- 4 , p63

28-Sep-2015 07:24:47PM

Cruised by: AZMETH

Filename: comm_for_blk1_typed_lf.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

FIZ: B

Grades: MOF Computerized Computerized Decay

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Type 2 (M):FH (C) 841, Plots in Type: 6, TUs: [RW outside : 0.4]

	F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilization Lim	nits	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m DBH	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5 10										
15										
20								1.5		
25 30		1.5	1.5				3.0			
35										
40	1.5		3.0	1.5			6.0	3.0		
45 50	1.5	1.5	3.0				3.0			
55										
60 65	1.5 4.5	1.5	3.0				6.0 4.5			
70	3.0	3.0					6.0			
75	3.0						3.0			
80 85	1.5 4.5						1.5 4.5			
90	1.5						1.5			
95 100	3.0						3.0			
105										
110										
115 120										
125										
130 135										
140										
145										
150 175										
200										
225 250										
250 275										
Total	25.5	7.5	10.5	1.5			45.0			
Dead P Dead U			1.5		3.0			4.5		
Live U										
12 5 +	25.5				n2) at 5 Le	evels	4F 0	<i>1</i> E		
12.5 + 17.5 +	25.5 25.5	7.5 7.5	10.5 10.5	1.5 1.5			45.0 45.0	4.5 4.5		
22.5 +	25.5	7.5	10.5	1.5			45.0	3.0		
27.5 + 32.5 +	25.5 25.5	6.0 6.0	9.0 9.0	1.5 1.5			42.0 42.0	3.0 3.0		
22.3	43.3	0.0	9.0	1.5			14.0	5.0		

^{*** 1} tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

FIZ: B

PSYU: Nootka

Grades: MOF Computerized Computerized Decay

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH Version: 2015.00 IFS build 5947

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

TBASL- 5 , p64

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [All Treatment Units: 1.0]

-21 (., - (-,	,	71	_,				•			
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio		17 5	17 5	15 5	15 5	15 5	17 5	15 5	17 5	17 5	17 5
Min DBH Stump Ht	cm (M)	17.5 30.0									
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (11)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10 15											
20											
25											
30											
35				6.3			6.3	12.5			
40 45		6.3						6.3			
50		0.3						0.5			
55											
60											
65 70		12.5						12.5			
70 75		12.5						12.5			
80		12.5						12.5			
85											
90											
95 100											
105											
110											
115											
120											
125 130											
135											
140											
145											
150											
175 200											
225											
250											
275											
Total		31.3		6.3			6.3	43.8			
Dead P Dead U											
Live U											
			Av	erage Bas	al Area (m	n2) at 5 Le	vels				
12.5 +		31.3		6.3			6.3	43.8			
17.5 +		31.3		6.3			6.3	43.8			
22.5 + 27.5 +		31.3 31.3		6.3			6.3 6.3	43.8 43.8			
32.5 +		31.3		6.3			6.3	43.8			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

ype Basal Area Table (m2/ha) FIZ: B

PSYU: Nootka

Grades: MOF Computerized
Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

TBASL- 6 , p65

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [Block: 0.3]

Type 3 (M	I)•F (P) 83.	I, PIOLS I	ın iype	I, IUS· [BIOCK • ().3]					
		F	С	Н	В	Y	PW	Total	DP	DU	LU
Utilizatio Min DBH	on Limits cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class 5											
10											
15											
20											
25 30											
35				6.3			6.3	12.5			
40				0.5			0.5	12.5			
45		6.3						6.3			
50											
55 60											
65		12.5						12.5			
70											
75		12.5						12.5			
80											
85 90											
95											
100											
105											
110 115											
120											
125											
130											
135											
140 145											
150											
175											
200											
225											
250 275											
Total		31.3		6.3			6.3	43.8			
Dead P											
Dead U											
Live U			7,1103	nago Pagal	1 7x02 (m²)) at 5 to	orrol a				
12.5 +		31.3	Avei	fage Basal 6.3	r wrea (III2	2) at 5 Le	6.3	43.8			
L7.5 +		31.3		6.3			6.3	43.8			
22.5 +		31.3		6.3			6.3	43.8			
27.5 +		31.3		6.3			6.3	43.8			
32.5 +		31.3		6.3			6.3	43.8			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF_NOVA

Type Basal Area Table (m2/ha)

Grades: MOF Computerized FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk1_typed_lf.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:24:47PM

TBASL- 7 , p66

Type 3 (M):F (P) 831, Plots in Type: 1, TUs: [RW outside : 0.7]

		F	C	H	В	Y	PW	Total	DP	DU	LU
Utilization	Limits										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15											
20											
25											
30											
35				6.3			6.3	12.5			
40											
45		6.3						6.3			
50											
55											
60											
65		12.5						12.5			
70											
75		12.5						12.5			
80											
85											
90											
95 100											
105											
110											
115											
120											
125											
130											
135											
140											
145											
150											
175											
200											
225											
250											
275											
Total		31.3		6.3			6.3	43.8			
Dead P											
Dead U											
Live U											
			Aver	age Basal	. Area (m2	2) at 5 Le	evels				
12.5 +		31.3		6.3			6.3	43.8			
17.5 +		31.3		6.3			6.3	43.8			
22.5 +		31.3		6.3			6.3	43.8			
27.5 +		31.3		6.3			6.3	43.8			
32.5 +		31.3		6.3			6.3	43.8			

*** 1 tree(s) changed to tree class 6:because only log was less then 3.00 m *** FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

Licence Number: COMM CP: PRE

Project: AVCF_NOVA

PLSUM- 1 , p67 Plot Summary

Grades: MOF Computerized Average Line Method

Computerized Decay

Computerized Waste

Computerized Breakage

Utilization Levels: Minimum DBH Top Diameter Stump Height Mature Blocks: (cm) 17.5 15.0 Immature Blocks:(cm) 12.0 10.0 30

Standard Log Length:(m) 10.00 28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Forest Type	Block Strip	Plot # Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss Ref No. YI OI M
1-CF (H) 951	001	2 20.250F	102	W.R. Cedar Doug-Fir Hemlock All Sp.	1 5 1 7	28.87 180.69 161.95 371.52	94.50 84.47 39.90 69.70	188.70 1090.21 245.78 1524.69	154.55 1063.60 238.90 1457.05	141.34 1009.09 224.15 1374.58	123.79 1003.94 224.15 1351.89	1509	211 110 396
		3 20.250F	90	W.R. Cedar Doug-Fir Hemlock All Sp.	1 3 1 5	201.17 109.70 83.40 394.28	35.80 83.97 55.60 57.18	113.22 751.15 234.29 1098.66	78.57 645.37 230.54 954.49	70.65 607.81 216.49 894.95	55.36 566.41 216.49 838.26	1509	211 110 396
		4 20.250F	85	W.R. Cedar Hemlock All Sp.	1 2 3	97.59 156.64 254.23	51.40 57.38 55.16	152.27 440.53 592.80	125.17 437.17 562.34	114.51 410.74 525.25	105.22 410.74 515.96	1509	211 396
		5 20.250F	42	W.R. Cedar Hemlock All Sp.	5 3 8	301.79 976.83 1278.62	65.36 28.14 40.16	929.89 509.69 1439.58	607.63 506.39 1114.02	542.54 475.81 1018.34	429.47 475.81 905.28	1509	211 396
		6 20.250F	55	Doug-Fir Hemlock All Sp.	1 1 2	54.15 95.72 149.87	69.00 51.90 58.66	248.96 218.60 467.56	244.48 217.07 461.55	232.03 203.95 435.98	231.78 203.95 435.74	1509	110 396
		7 20.250F	60	W.R. Cedar Doug-Fir All Sp.	2 3 5	113.20 129.42 242.62	67.49 77.31 72.89	368.64 580.19 948.82	270.45 562.12 832.57	244.65 533.11 777.76	208.51 528.52 737.03	1509	211 110
		8 20.250F	30	Doug-Fir Hemlock Y. Cedar All Sp.	1 1 1 3	33.07 313.02 173.95 520.03	88.30 28.70 38.50 38.57	199.83 118.15 144.93 462.92	197.24 116.61 131.75 445.60	187.24 109.53 121.60 418.37	187.04 109.53 121.46 418.03	1509	110 396 610
		9 20.250F	40	W.R. Cedar All Sp.	2 2	173.71 173.71	54.48 54.48	343.85 343.85	281.84 281.84	257.77 257.77	233.92 233.92	1509	211
		15 20.250F	65	W.R. Cedar Doug-Fir Hemlock All Sp.	4 1 2 7	360.60 27.86 315.21 703.67	53.48 96.20 40.45 50.64	659.43 239.10 415.08 1313.61	478.14 236.23 411.85 1126.23	431.98 224.28 386.95 1043.21	358.92 224.04 386.95 969.90	1509	211 110 396
2-FH (C) 841	001	1 9.000F	73	W.R. Cedar Doug-Fir Hemlock All Sp.	2 2 1 5	49.27 120.11 29.62 199.01	68.20 43.68 62.20 53.66	171.28 157.15 124.97 453.40	139.59 153.23 122.97 415.80	127.60 145.38 115.47 388.45	113.04 144.61 115.47 373.13	1509	211 110 396

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

Plot Summary

30

FIZ: B

PSYU: Nootka

PLSUM- 2 , p68 28-Sep-2015 07:24:47PM

Average Line Method

Grades: MOF Computerized

15.0

10.0

Filename: comm_for_blk1_typed_lf.ccp

Licence Number: COMM CP: PRE

Mature Blocks: (cm)

Immature Blocks:(cm)

Computerized Decay Computerized Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Project: AVCF_NOVA Utilization Levels:

Minimum DBH Top Diameter Stump Height

17.5

12.0

Standard Log Length:(m) 10.00

Forest Type	Block Strip	#	olot Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss Ref No. YI OI M
2-FH (C) 841	001	10	9.000F	42	W.R. Cedar Doug-Fir All Sp.	2 4 6	263.67 79.05 342.72	29.48 76.15 44.79	81.50 304.59 386.09	60.41 297.12 357.53	54.71 281.89 336.59	46.90 280.12 327.02	1509	211 110
		11	9.000F	45	Doug-Fir Hemlock All Sp.	3 2 5	66.63 299.05 365.68	71.83 27.68 39.58	238.79 72.39 311.18	234.65 64.97 299.62	222.71 60.63 283.34	222.39 54.97 277.36	1509	110 396
		12	9.000F	30	Balsam Doug-Fir Hemlock All Sp.	1 1 5 7	74.95 26.79 427.65 529.40	39.10 65.40 36.60 38.93	94.93 73.64 406.48 575.06	92.85 72.24 400.22 565.31	88.10 68.56 375.83 532.49	87.62 68.41 375.83 531.87	1509	411 110 396
		13	9.000F	42	Doug-Fir Y. Cedar All Sp.	6 2 8	112.10 154.62 266.72	78.31 38.50 58.63	461.85 173.94 635.79	451.27 158.11 609.38	428.18 145.94 574.11	426.32 145.76 572.08	1509	110 610
		14	9.000F	53	W.R. Cedar Doug-Fir All Sp.	1 1 2	33.71 21.27 54.98	58.30 73.40 64.56	70.98 84.79 155.77	46.00 83.43 129.43	41.03 79.19 120.22	31.87 79.11 110.98	1509	211 110
3-F (P) 831	001	16	6.250F	15	Doug-Fir Hemlock W.W. Pine All Sp.	5 1 1 7	109.33 72.63 58.44 240.41	60.33 33.10 36.90 48.14	190.95 32.54 53.67 277.16	187.40 31.41 52.97 271.78	177.86 29.45 50.29 257.59	177.47 29.45 50.29 257.21	1509	110 396 710

Plot Frequency Report

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:24:47PM

Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

PLFRQ- 1 , p69

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage

Measure Plots

IICUDULC I ICCD			
Blocks	Timber	Type	3
	_	۷	٥
BLOCK 001 (M) # of Plots ha / Plot	9 0.52	6 1.10	1.00
Cutting Permit # of Plots ha / Plot	9 0.52	6 1.10	1.00

Plot Frequency Report FIZ: B

PSYU: Nootka

28-Sep-2015 07:24:47PM

Average Line Method

Project: AVCF_NOVA

Grades: MOF Computerized

Filename: comm_for_blk1_typed_lf.ccp

Licence Number: COMM CP: PRE

Computerized Decay Computerized Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH
Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

PLFRQ- 2 , p70

Measure Plots

Harvest Methods	Timber 1	Type 2	3
METHOD CC # of Plots ha / Plot	1 1.10	4 1.02	
METHOD HL # of Plots ha / Plot	8 0.45	1 0.40	
METHOD SC # of Plots ha / Plot		1 2.10	1.00
All Methods # of Plots ha / Plot	9 0.52	6 1.10	1 1.00

Grades: MOF Computerized

Plot Frequency Report FIZ: B

PLFRQ- 3 , p71 28-Sep-2015 07:24:47PM

Average Line Method

Computerized Decay Licence Number: COMM CP: PRE

Computerized Waste

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Project: AVCF_NOVA

Computerized Breakage

Count Plots

Blocks Timber Type

BLOCK 001 (M) # of Plots ha / Plot

Cutting Permit # of Plots ha / Plot

Plot Frequency Report

28-Sep-2015 07:24:47PM

Average Line Method

AVCF

Grades: MOF Computerized

FIZ: B PSYU: Nootka Filename: comm_for_blk1_typed_lf.ccp Compiled by: F Warren and Associates Ltd

PLFRQ- 4 , p72

Computerized Decay

Region: 2 - West Coast

District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE Project: AVCF_NOVA

Computerized Waste
Computerized Breakage

Count Plots

Harvest Methods Timber Type 1 2 3

METHOD CC

of Plots
ha / Plot

METHOD HL # of Plots ha / Plot

METHOD SC
of Plots
ha / Plot

All Methods # of Plots ha / Plot

AVCF

COMM - CP# PRE

Block #: Block 2

SUMMARY OF VOLUMES (loss factors)
FULL VOLUMES APPLIED

28-Sep-2015 07:52:52PM

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Map Area Statement Report

FIZ: B

PSYU: Nootka

28-Sep-2015 07:52:52PM

Average Line Method

Project: AVCF

Forest District

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Licence Number: COMM CP: PRE

Computerized Decay
Computerized Waste
Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH
Version: 2015.00 IFS build 5947

MAS- 1 , p2

Card A Cruise Identity

Licence # : COMM Cutting Permit # : PRE
Number of Blocks : 1 Forest Region : Wes

: 1 Forest Region : West Coast : South Island Type : PSYU

Unit No : Nootka Tenure : Community Forest Agreement

Quota : Prop./Mngd.PSYU,TFL,or SSA Sale Type : None Elevation : 1 Co-ordinates Zone : Unknown

East : 0 North : 0

Total Merch Area : 12.10 Report Type : *** FOR APPRAISAL PURPOSES ***
Locality :

Card B Compilation Standard

Damage : Damage : Compile All Trees

Double Sampling : Measure Plots Only Special Compilation : No Special Compilation

Species Compilation : Exceptions Not Used Type of Compilation : Coastal

Compilation Standard Mature Immature

DBH Limit 17.50 12.00

Stump Height 30 30

Top Diameter 15.00 10.00

Card C Type Description

Type Description

A B

1 HF 951
2 HFC 941

6.1 0.3
5.3 0.4

Card D Block Description

Silvicultural Treatment Units

Block Description Maturity Type A B

002 Block 2 M 1 6.1 0.3
2 5.3 0.4

Card F Harvesting Description

Harvest Harvest Silvicultural Treatment Units Method Description Type Α В CC Cable - Clearcut 1 2.1 0.3 2 4.0 0.4 Heli - Land 1 4.0 2 SC Ground Systems - Clearcut 1.3

Card G Treatment Unit Description

Treatment Unit Description

A Block RW

Appraisal Summary Report

APPSM- 1 , p3

28-Sep-2015 07:52:52PM

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Grades: MOF Computerized FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

No Of Blocks : 1

Utilization Levels: Minimum DBH Top Diameter Stump Height

Immature Blocks:(cm) 12.0 10.0 30

Standard Log Length: (m) 10.00

17.5 15.0 30 Mature Blocks: (cm)

Net Area: [All Treatment Units : 12.1]

All Method Summary Algorithm Grades %

Average Line Method

Project: AVCF

Location :

Licence Number: COMM CP: PRE

Aig	JIICIIII GIAACS 6														
5	Species	F	Η	I	J	M	U	X	Y	N	Net Volume (m3)	Ne	et Volume / h	ha
Code	e Description									All	Live	DP	All	Live	DP
BA	Balsam		39	17	19		25			663	663	0	54.775	54.775	0.000
CE	Cedar		34	9	29	4	20	2	2	571	530	40	47.157	43.817	3.340
CY	Y. Cedar		41		32		27			154	154	0	12.723	12.723	0.000
FI	Doug-Fir	3	59	17	3		15		3	1846	1746	100	152.584	144.282	8.302
HE	Hemlock		35	17	18		28	1	1	7070	6374	696	584.259	526.755	57.504
	Total									10303	9466	837	851.498	782.352	69.146

Harvesting Method Summaries

Harvest Method	Net Volume	Net Vol /10m Log	Net Vol /Hectare	Hem+ Bal%	Partial Cut%	Slope%	Down Tree%	Heavy Fire%
CC	5431	1.13	798.651	77		85	3	0
HL	3972	1.27	992.958	72		68	2	0
SC	900	1.04	692.667	80		49	4	0
Conventional Methods	6331	1.12	781.642	77		79	3	0
All Methods	10303	1.17	851.498	75			3	0

Cutting Authority

Plots/Ha

95% Confidence Interval

11000/114	1.5		
Cruised Trees/Plot	4.9		
Net 2nd Growth-Conifer %	0.0		
Net 2nd Growth-Conifer (m3)	0		
Net Immature by Block %	002: 0%		
Non Heli Select Conifer (m3/ha)	851.50		
Heli Select Total (decimal)	0.00		
Heli+Skyline Total (decimal)	0.39		
Piece Size - Conifer (m3/10m log)	1.17		
Cruise Date (yy-mm):	15-09		
# Plots: 16 # <= 5yrs: 16	# > 5yrs:	0 # > 10yrs: 0 # no date	<u>:</u>
Piece Size - Conifer (m3/10m log) Cruise Date (yy-mm):	1.17 15-09	0 # > 10yrs: 0 # no date	<u>:</u>

26.9

1.3

All Method Summary

28-Sep-2015 07:52:52PM

Compiled by: F Warren and Associates Ltd

AHV- 1 , p4

Average Line Method Grades: MOF Computerized FIZ: B Filename: comm_for_blk2_LF_typed.ccp

PSYU: Nootka

Region: 2 - West Coast Cruised by: AZMETH

District: 04 - South Island Version: 2015.00 IFS build 5947

[All Treatment Units : 12.1]

Licence Number: COMM CP: PRE

Project: AVCF

		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits					10.5	15.5	15.5	15.5	10.5
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data	2	11004	11084		0100	000	E0E2	E.C.2	010
Gross Merchantable	m3	11974	11974		2128	892	7973	763	218
Net Merchantable	m3	10303	10303		1846	571	7070	663	154
Net Merch - All	m3/ha	851.498	851.498		152.584	47.157	584.259	54.775	12.723
Net Merch - Live	m3/ha	782.352	782.352		144.282	43.817	526.755	54.775	12.723
Net Merch - DP	m3/ha	69.146	69.146		8.302	3.340	57.504		
Decay	%	6	6		6	20	4	6	17
Waste(billing)	%	2	2		2	13	1	2	7
Total Cull (DWB)	%	14	14		13	36	11	13	29
iocai cuii (DWB)	-0	14	7.4		13	30	11	13	20
Net Merch Vol/Tree	m3	2.89	2.89		6.12	1.42	3.08	2.03	0.64
Avg 10.0 m Log Net	m3	1.17	1.17		1.56	0.71	1.23	0.87	0.56
Useless Dead/Living	용								
Net Second Growth	%								
All Burn Volume	용								
Heavy Fire Volume	ક								
Blowdown Volume	ક	3	3		5	7	2		
Insect Volume	ક								
Algorithm Grades %									
#2 Lum/#1 Lum	F				3				
#2 Sawlog	r H	41	41		59	34	35	39	41
#3 Sawlog	I	16	16		17	9	17	39 17	41
#4 Sawlog	J	16	16		3	29	18	19	32
#4 Shingle	M	10	Τρ		3	4	18	19	34
#4 Shingle #5 Utility	M U	25	25		15	20	28	25	27
#6 Utility	X	1	1		13	20	1	25	27
#7 Chipper	Y	1	1		3	2	1		
# \ CIITbber	τ	1	1		3	2	1		

Computerized Decay

Computerized Waste

Computerized Breakage

Licence Number: COMM CP: PRE

All Method Summary

Average Line Method Grades: MOF Computerized

Computerized Decay Computerized Waste

Region: 2 - West Coast District: 04 - South Island Computerized Breakage

2

2

3

1

1

FIZ: B

PSYU: Nootka

[Block : 11.4]

Project: AVCF

#6 Utility

#7 Chipper

Χ

Y

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits		IOCAI	COLLITEL	Decid	P	C	11	Б	1
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	11306	11306		2011	843	7533	713	206
Net Merchantable	m3	9728	9728		1747	539	6677	619	146
Net Merch - All	m3/ha	853.349	853.349		153.241	47.322	585.701	54.312	12.772
Net Merch - Live	m3/ha	783.804	783.804		145.048	44.026	527.645	54.312	12.772
Net Merch - DP	m3/ha	69.545	69.545		8.193	3.296	58.056		
Decay	8	6	6		6	20	4	6	17
Waste(billing)	8	2	2		2	13	1	2	7
Total Cull (DWB)	%	14	14		13	36	11	13	29
IOCAI CUII (DWB)	70	14	14		13	30	11	13	29
Net Merch Vol/Tree	m3	2.89	2.89		6.12	1.44	3.08	2.01	0.64
Avg 10.0 m Log Net	m3	1.17	1.17		1.56	0.72	1.23	0.86	0.56
Useless Dead/Living	%								
Not Corond Coosth	%								
Net Second Growth	8								
All Burn Volume	%								
Heavy Fire Volume	용								
Blowdown Volume	용	3	3		5	7	2		
Insect Volume	%								
Algorithm Grades %									
#2 Lum/#1 Lum	F				3				
#2 Sawlog	H	41	41		59	35	36	40	42
#3 Sawlog	I	16	16		17	9	17	17	
#4 Sawlog	J	16	16		3	28	17	19	31
#4 Shingle	M					4			
#5 Utility	U	25	25		15	20	28	24	27

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright@ 1996-2015, Industrial Forestry Service Ltd.

1

1

1

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

AHV- 2 , p5

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

AHV- 3 , p6

Average Line Method Grades: MOF Computerized

Computerized Decay

Computerized Waste Computerized Breakage All Method Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Project: AVCF [RW : 0.7]

		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits		IOLAI	confiler	реста	F	C	н	В	Y
Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	668 575 821.363 758.715 62.647	668 575 821.363 758.715 62.647		117 99 141.882 131.811 10.070	49 31 44.465 40.414 4.051	440 393 560.784 512.258 48.526	50 44 62.306 62.306	11 8 11.926 11.926
Decay Waste(billing) Total Cull (DWB)	00 00 00	6 2 14	6 2 14		7 3 15	21 13 37	4 1 11	6 2 14	15 6 27
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	2.76 1.15	2.76 1.15		6.06 1.55	1.20	2.98 1.21	2.45 0.99	0.51
Net Second Growth	8								
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	olo olo olo	3	3		7	9	2		
Algorithm Grades %									
#2 Lum/#1 Lum #2 Sawlog #3 Sawlog #4 Sawlog	F H I J	1 40 15 17	1 40 15 17		3 60 17 2	30 8 34	37 15 19	42 19 13	36 40
#4 Shingle #5 Utility #6 Utility #7 Chipper	M U X Y	25 1 1	25 1 1		15 3	3 21 2 2	28 1	26	24

Licence Number: COMM CP: PRE

Harvest Method Summary 28-Sep-2015 07:52:52PM

Grades: MOF Computerized

Average Line Method

Project: AVCF

Computerized Decay

Computerized Waste
Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

FIZ: B

PSYU: Nootka

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

HV-1, p7

Harvest Method : CC - Cable - Clearcut [All Treatment Units : 6.8]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Volume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	6302 5431 798.651 740.901 57.750	6302 5431 798.651 740.901 57.750		1085 910 133.816 122.413 11.403	458 289 42.437 37.850 4.587	4121 3693 543.092 501.332 41.760	536 462 67.982 67.982	103 77 11.324 11.324
Decay Waste(billing) Total Cull (DWB)	00 00 00	6 2 14	6 2 14		8 4 16	22 13 37	3 1 10	7 2 14	14 5 25
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	2.67	2.67 1.13		6.01 1.54	1.06	2.91	2.80 1.08	0.44
Net Second Growth	%								
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	olo olo olo	3	3		9	11	2		
% Average Slope		85							
#2 Lum/#1 Lum #2 Sawlog #3 Sawlog #4 Sawlog	F H I J	1 39 14 18	1 39 14 18		4 59 17 2	26 7 38	37 14 20	44 19 10	31 49
#4 Shingle #5 Utility #6 Utility #7 Chipper	M U X Y	26 1 1	26 1 1		15 3	3 22 3 1	28 1	27	20

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

#7 Chipper

28-Sep-2015 07:52:52PM Harvest Method Summary

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

Region: 2 - West Coast District: 04 - South Island

FIZ: B

PSYU: Nootka

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

HV-2, p8

Harvest Method : CC - Cable - Clearcut [Block : 6.1]

		Total	Conifer	Decid	F	C	H	В	Y
Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M) Log Len m Tolume and Size Data					17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0	17.5 30.0 15.0 10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	5634 4856 796.045 738.858 57.188	5634 4856 796.045 738.858 57.188		968 811 132.891 121.335 11.556	409 257 42.204 37.555 4.649	3681 3300 541.061 500.078 40.983	486 419 68.634 68.634	91 69 11.259 11.259
Decay Waste(billing) Total Cull (DWB)	00 00 00	6 2 14	6 2 14		8 4 16	22 13 37	3 1 10	7 2 14	14 5 25
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	2.66	2.66 1.13		6.00 1.54	1.04	2.90 1.19	2.85 1.09	0.43
Net Second Growth	%								
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	alo alo alo alo	3	3		9	11	2		
lgorithm Grades %									
#2 Lum/#1 Lum #2 Sawlog #3 Sawlog #4 Sawlog	F H I J	1 39 14 18	1 39 14 18		4 59 17 2	25 6 40	37 14 20	44 19 10	3) 5)
<pre>#4 Shingle #5 Utility #6 Utility</pre>	M U X	26 1	26 1		15	3 22 3	28 1	27	20

3

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

Harvest Method Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

HV-3, p9

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Harvest Method : CC - Cable - Clearcut [RW : 0.7]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits		IOCAI	CONTICE	DCCIG	r	C	11	Б	1
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data					20.0	20.0	10.0	20.0	20.0
Gross Merchantable	m3	668	668		117	49	440	50	11
Net Merchantable	m3	575	575		99	31	393	44	8
Net Merch - All	m3/ha	821.363	821.363		141.882	44.465	560.784	62.306	11.926
Net Merch - Live	m3/ha	758.715	758.715		131.811	40.414	512.258	62.306	11.926
Net Merch - DP	m3/ha	62.647	62.647		10.070	4.051	48.526		
1100 1101 011 21	1113 / 1101	02.01/	02.017		20.070	1.051	10.520		
Decay	용	6	6		7	21	4	6	15
Waste(billing)	8	2	2		3	13	1	2	6
Total Cull (DWB)	ş	14	14		15	37	11	14	27
Net Merch Vol/Tree	m3	2.76	2.76		6.06	1.20	2.98	2.45	0.51
Avg 10.0 m Log Net	m3	1.15	1.15		1.55	0.64	1.21	0.99	0.48
Useless Dead/Living	용								
Net Second Growth	ક								
All Burn Volume	ક								
Heavy Fire Volume	8								
Blowdown Volume	8	3	3		7	9	2		
Insect Volume	8								
Algorithm Grades %									
#2 Lum/#1 Lum	F	1	1		3				
#2 Sawlog	H	40	40		60	30	37	42	36
#3 Sawlog	I	15	15		17	8	15	19	
#4 Sawlog	J	17	17		2	34	19	13	40
#4 Shingle	M					3			
#5 Utility	U	25	25		15	21	28	26	24
#6 Utility	X	1	1			2	1		
#7 Chipper	Y	1	1		3	2			

Grades: MOF Computerized

Computerized Decay

Computerized Waste

Computerized Breakage

Licence Number: COMM CP: PRE

Project: AVCF

HV- 4 , p10

Average Line Method Grades: MC

Grades: MOF Computerized

Computerized Decay
Computerized Waste

Computerized Waste
Computerized Breakage

PSYU: Nootka

Harvest Method Summary

FIZ: B

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM
Filename: comm_for_blk2_LF_typed.ccp
Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Harvest Method: HL - Heli - Land [All Treatment Units: 4.0]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits Min DBH cm (M) Stump Ht cm (M) Top Dia cm (M)					17.5 30.0 15.0	17.5 30.0 15.0	17.5 30.0 15.0	17.5 30.0 15.0	17.5 30.0 15.0
Log Len m Volume and Size Data					10.0	10.0	10.0	10.0	10.0
Gross Merchantable Net Merchantable Net Merch - All Net Merch - Live Net Merch - DP	m3 m3/ha m3/ha m3/ha	4631 3972 992.958 893.307 99.651	4631 3972 992.958 893.307 99.651		878 811 202.821 202.821	363 239 59.791 59.791	3203 2778 694.457 594.806 99.651	84 78 19.421 19.421	103 66 16.468 16.468
Decay Waste(billing) Total Cull (DWB)	০০ ০০ ০০	6 2 14	6 2 14		2 1 8	18 14 34	6 2 13	2 1 7	22 10 36
Net Merch Vol/Tree Avg 10.0 m Log Net Useless Dead/Living	m3 m3 %	3.50 1.27	3.50 1.27		6.32 1.60	4.22 1.17	3.50 1.32	0.57 0.30	3.44 1.27
Net Second Growth	%								
All Burn Volume Heavy Fire Volume Blowdown Volume Insect Volume	010 010 010	2	2				4		
% Average Slope		68							
Algorithm Grades %									
#2 Sawlog #3 Sawlog #4 Sawlog #4 Shingle	H I J M	44 20 12	44 20 12		62 17 4	51 13 9 6	37 23 12	100	60
#5 Utility #6 Utility #7 Chipper	U X Y	23	23 1		14	18	27 1		40

Licence Number: COMM CP: PRE

Project: AVCF

HV- 5 , p11

Average Line Method

Grades: MOF Computerized

Computerized Breakage

Computerized Decay Computerized Waste

Region: 2 - West Coast District: 04 - South Island

PSYU: Nootka

Harvest Method Summary

FIZ: B

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Harvest Method : SC - Ground Systems - Clearcut[All Treatment Units : 1.3]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits									
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	1041	1041		165	71	650	144	12
Net Merchantable	m3	900	900		125	43	599	123	11
Net Merch - All	m3/ha	692.667	692.667		96.177	32.971	460.529	94.470	8.519
Net Merch - Live	m3/ha	657.772	657.772		78.554	25.882	450.346	94.470	8.519
Net Merch - DP	m3/ha	34.895	34.895		17.623	7.089	10.183		
Decay	%	6	6		14	25	2	7	1
Waste(billing)	ક	2	2		7	13	0	3	_
Total Cull (DWB)	8	14	14		24	40	8	14	8
Total Call (DWD)	0	11			21	10	O		O
Net Merch Vol/Tree	m3	2.25	2.25		5.69	0.61	2.55	5.03	0.23
Avg 10.0 m Log Net	m3	1.04	1.04		1.49	0.40	1.10	1.53	0.25
Useless Dead/Living	%								
Net Second Growth	%								
All Burn Volume	ક								
Heavy Fire Volume	ક								
Blowdown Volume	용	4	4		18	22			
Insect Volume	용								
% Average Slope		49							
Algorithm Grades %									
#2 Lum/#1 Lum	F	1	1		9				
#2 Sawlog	H	38	38		53		35	49	
#3 Sawlog	I	10	10		16		7	21	
#4 Sawlog	J	22	22			69	27		100
#5 Utility	Ū	27	27		17	26	30	30	
#6 Utility	X	1	1		1	5	1		
#7 Chipper	Y	1	1		4				

Licence Number: COMM CP: PRE

CP- 1 , p12

Project: AVCF

Average Line Method Grades: MC

Grades: MOF Computerized Computerized Decay

Computerized Waste
Computerized Breakage

Cutting Permit Summary

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: [All Treatment Units: 12.1]
Gross Area: [Grand Total: 12.1]

		Total	Conifer	Decid	F	С	Н	В	Y
Jtilization Limits									
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
olume and Size Data									
Gross Merchantable	m3	11974	11974		2128	892	7973	763	218
Net Merchantable	m3	10303	10303		1846	571	7070	663	154
Net Merch - All	m3/ha	851	851		153	47	584	55	13
Distribution	용	100	100		18	6	69	6	1
Decay	ક	6	6		6	20	4	6	17
Waste	ક	2	2		2	9	1	2	
Waste(billing)	8	2	2		2	13	1	2	
Breakage	%	6	6		5	7	6	5	7
Total Cull (DWB)	%	14	14		13	36	11	13	29
Stems/Ha (Live & DP)	-	295.0	295.0		24.9	33.1	190.0	27.0	20.0
Avg DBH (Live & DP)	cm	57.8	57.8		84.5	52.3	57.8	46.0	35.8
Snags/Ha	J	37.0	37.0		01.0	32.3	37.0	10.0	33.
Avg Snag DBH	cm								
Gross Merch Vol/Tree		3.35	3.35		7.05	2.22	3.47	2.34	0.90
Net Merch Vol/Tree	m3	2.89	2.89		6.12	1.42	3.08	2.03	0.64
Avg Weight Total Ht	m	39.3	39.3		46.0	37.6	38.3	37.4	28.1
Avg Weight Merch Ht	m	32.7	32.7		40.9	30.8	31.1	31.6	22.0
Avg 10.0 m Log Net	m3	1.17	1.17		1.56	0.71	1.23	0.87	0.56
Avg 10.0 m Log Gross		1.28	1.28		1.70	1.00	1.30	0.94	0.72
Avg # of 10.0 m Logs		2.63	2.63		4.14	2.22	2.67	2.49	1.25
Net Immature	/ II CC %	2.03	2.03		1.11	2.22	2.07	2.49	1.2.
Net 2nd Growth	%								
Average Slope	9	74							
Average Slope .lgorithm Grades %	6	/4							
#2 Lum/#1 Lum	F				3				
	r H	41	41		59	34	2.5	39	41
#2 Sawlog						~ -	35		4.
#3 Sawlog	I	16 16	16		17	9	17	17 19	2.0
#4 Sawlog	J	16	16		3	29	18	19	32
#4 Shingle	M		0.5			4			
#5 Utility	Ū	25	25		15	20	28	25	27
#6 Utility	X	1	1			2	1		
#7 Chipper	Y	1	1		3	2	1		
Statistical Summary									
Coeff. of Variation	%	50.1	50.1		118.0	155.2	60.2	180.3	301.5
Two Standard Error	8	26.9	26.9		63.3	83.2	32.3	96.7	161.7
Number and Type of P			16						
Number of Potential	Trees	79							
Plots/Ha		1.3							
Cruised Trees/Plot		4.9							

Licence Number: COMM CP: PRE

CP- 2 , p13

Average Line Method

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage Cutting Permit Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Net Area: [Block : 11.4]

Project: AVCF

						-			
		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits					17.5	17.5	17.5	17.5	17.5
Min DBH cm (M)									
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data	2	11206	11206		0011	0.40	EE22	E10	006
Gross Merchantable	m3	11306	11306		2011	843	7533	713	206
Net Merchantable	m3	9728	9728		1747	539	6677	619	146
Net Merch - All	m3/ha	853	853		153	47	586	54	13
Distribution	용	100	100		18	6	69	6	1
Decay	%	6	6		6	20	4	6	17
Waste	용	2	2		2	9	1	2	5
Waste(billing)	용	2	2		2	13	1	2	7
Breakage	8	6	6		5	7	6	5	7
Total Cull (DWB)	용	14	14		13	36	11	13	29
Stems/Ha (Live & DP)		294.9	294.9		25.0	32.9	190.1	27.1	19.8
Avg DBH (Live & DP)	cm	57.8	57.8		84.5	52.5	57.8	45.8	36.0
Snags/Ha									
Avg Snag DBH	cm								
Gross Merch Vol/Tree	m3	3.36	3.36		7.05	2.25	3.48	2.31	0.91
Net Merch Vol/Tree	m3	2.89	2.89		6.12	1.44	3.08	2.01	0.64
Avg Weight Total Ht	m	39.4	39.4		46.0	37.7	38.3	37.4	28.2
Avg Weight Merch Ht	m	32.7	32.7		40.9	30.9	31.1	31.6	22.1
Avg 10.0 m Log Net	m3	1.17	1.17		1.56	0.72	1.23	0.86	0.56
Avg 10.0 m Log Gross	m3	1.28	1.28		1.70	1.01	1.30	0.93	0.73
Avg # of 10.0 m Logs	/Tree	2.63	2.63		4.14	2.23	2.67	2.48	1.26
Net Immature	%								
Net 2nd Growth	%								
Average Slope	%	74							
Algorithm Grades %									
#2 Lum/#1 Lum	F				3				
#2 Sawlog	Н	41	41		59	35	36	40	42
#3 Sawlog	I	16	16		17	9	17	17	
#4 Sawlog	J	16	16		3	28	17	19	31
#4 Shingle	M					4			
#5 Utility	U	25	25		15	20	28	24	27
#6 Utility	X	1	1			2	1		
#7 Chipper	Y	1	1		3	2	1		
Statistical Summary									
Coeff. of Variation	ક	50.1	50.1		118.0	155.2	60.2	180.3	301.5
Two Standard Error	%	26.9	26.9		63.3	83.2	32.3	96.7	161.7
Number and Type of P	lots		16						, , ,
Number of Potential		79	-						
Plots/Ha		1.3							
Cruised Trees/Plot		4.9							

CP- 3 , p14 28-Sep-2015 07:52:52PM

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage

Cutting Permit Summary

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: [RW : 0.7]

		m : 1	~ '.	- '1	_	~		_	
Utilization Limits		Total	Conifer	Decid	F	С	Н	В	Y
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data					10.0	10.0	10.0	10.0	10.0
Gross Merchantable	m3	668	668		117	49	440	50	11
Net Merchantable	m3	575	575		99	31	393	44	8
Net Merch - All	m3/ha	821	821		142	44	561	62	12
Distribution	1113/11a %	100	100		17	5	68	8	1
Decay	%	6	6		7	21	4	6	15
Waste	%	2	2		3	8	1	2	5
Waste(billing)	%	2	2		3	13	1	2	6
Breakage	6 %	6	6		5 5	7	6	5	7
Total Cull (DWB)	6 %	14	14		15	37	11	14	27
Stems/Ha (Live & DP)		297.5	297.5		23.4	37.2	188.2	25.4	23.3
Avg DBH (Live & DP)		56.9	56.9		85.2	49.3	57.2	49.9	32.8
9	cm	50.9	50.9		85.2	49.3	5/.2	49.9	32.8
Snags/Ha									
Avg Snag DBH	cm	2 01	2 01		7 11	1 00	2 24	2 02	0.70
Gross Merch Vol/Tree		3.21	3.21		7.11	1.89	3.34	2.83	0.70
Net Merch Vol/Tree	m3	2.76	2.76		6.06	1.20	2.98	2.45	0.51
Avg Weight Total Ht	m	38.7	38.7		45.7	35.7	37.6	38.4	26.5
Avg Weight Merch Ht	m	32.1	32.1		40.7	28.9	30.4	32.7	20.2
Avg 10.0 m Log Net	m3	1.15	1.15		1.55	0.64	1.21	0.99	0.48
Avg 10.0 m Log Gross		1.25	1.25		1.72	0.91	1.27	1.08	0.60
Avg # of 10.0 m Logs		2.56	2.56		4.13	2.07	2.63	2.63	1.18
Net Immature	8								
Net 2nd Growth	8								
Average Slope	%	74							
Algorithm Grades %	_								
#2 Lum/#1 Lum	F	1	1		3			4.0	0.5
#2 Sawlog	H	40	40		60	30	37	42	36
#3 Sawlog	I	15	15		17	8	15	19	
#4 Sawlog	J	17	17		2	34	19	13	40
#4 Shingle	M					3			
#5 Utility	U	25	25		15	21	28	26	24
#6 Utility	X	1	1			2	1		
#7 Chipper	Y	1	1		3	2			
Statistical Summary									
Coeff. of Variation	용	50.1	50.1		118.0	155.2	60.2	180.3	301.5
Two Standard Error	용	26.9	26.9		63.3	83.2	32.3	96.7	161.7
Number and Type of P			16						
Number of Potential	Trees	79							
Plots/Ha		1.3							
Cruised Trees/Plot		4.9							

BS-1, p15

Average Line Method Grades: MOF Computerized

Block Summary FIZ: B

PSYU: Nootka

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp

Average Line Metho

Project: AVCF

Grades: MOF Computerized Computerized Decay Computerized Waste

Computerized Breakage

Compiled by: F Warren and Associates Ltd

Region: 2 - West Coast Cruised by: AZMETH
District: 04 - South Island Version: 2015.00 IFS build 5947

Net Area: Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [All Treatment Units: 12.1]

		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits		IOCAI	COLLECT	Decia	r	C	11	В	1
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	11974	11974		2128	892	7973	763	218
Net Merchantable	m3	10303	10303		1846	571	7070	663	154
Net Merch - All	m3/ha	851	851		153	47	584	55	13
Distribution	8	100	100		18	6	69	6	1
Decay	ુ અ	6 2	6 2		6 2	20 9	4 1	6 2	17 5
Waste Waste(billing)	%	2	2		2	13	1	2	7
Breakage	%	6	6		5	13 7	6	5	7
Total Cull (DWB)	%	14	14		13	36	11	13	29
Stems/Ha (Live & DP)	•	295.0	295.0		24.9	33.1	190.0	27.0	20.0
Avg DBH (Live & DP)	cm	57.8	57.8		84.5	52.3	57.8	46.0	35.8
Snags/Ha	Cili	37.0	37.0		01.5	32.3	37.0	10.0	33.0
Avg Snag DBH	cm								
Gross Merch Vol/Tree		3.35	3.35		7.05	2.22	3.47	2.34	0.90
Net Merch Vol/Tree	m3	2.89	2.89		6.12	1.42	3.08	2.03	0.64
Avg Weight Total Ht	m	39.3	39.3		46.0	37.6	38.3	37.4	28.1
Avg Weight Merch Ht	m	32.7	32.7		40.9	30.8	31.1	31.6	22.0
Avg 10.0 m Log Net	m3	1.17	1.17		1.56	0.71	1.23	0.87	0.56
Avg 10.0 m Log Gross		1.28	1.28		1.70	1.00	1.30	0.94	0.72
Avg # of 10.0 m Logs		2.63	2.63		4.14	2.22	2.67	2.49	1.25
Net Immature	8								
Net 2nd Growth	%								
Average Slope	%	74							
Algorithm Grades %					3				
#2 Lum/#1 Lum #2 Sawlog	F H	41	41		59	34	35	39	41
#3 Sawlog	I	16	16		17	9	35 17	39 17	41
#4 Sawlog	J	16	16		3	29	18	19	32
#4 Shingle	M	10	10		3	4	10	10	32
#5 Utility	IJ	25	25		15	20	28	25	27
#6 Utility	X	1	1			2	1	23	
#7 Chipper	Y	1	1		3	2	1		
Statistical Summary									
Coeff. of Variation	8	50.1	50.1	1	L18.0	155.2	60.2	180.3	301.5
Two Standard Error	8	26.9	26.9		63.3	83.2	32.3	96.7	161.7
Number and Type of P		MP =	16						
Number of Potential	Trees	79							
Plots/Ha		1.3							
Cruised Trees/Plot		4.9							
Slope % Statistics			_			_			

Min= 33, Max=140, CV=39.2, Std Error of Mean=7.3, 2SE%=20.9

Average Line Method

Project: AVCF

Grades: MOF Computerized Block Summary FIZ: B

Grades: MOF Computerized FIZ: B
Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH
Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:52:52PM

Net Area: Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [Block: 11.4]

Utilization Limits Min DBH cm (M) 17.5 17.0 17.0 17.5			Total	Conifer	Decid	F	С	Н	В	Y
Min DBH cm (M) 17.5<	tilization Limits		IULAI	Confirer	Decia	г	C	п	Б	1
Top Dia cm (M) Log Len m Volume and Size Data Gross Merchantable m3 11306 11306 2011 843 7533 713 206 Net Merchantable m3 9728 9728 1747 539 6677 619 146 Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 1 Decay % 6 6 6 6 6 20 4 6 17 Waste % 2 2 2 2 9 1 2 9 1 2 5 Waste(billing) % 2 2 2 2 13 1 2 5 Breakage % 6 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8						17.5	17.5	17.5	17.5	17.5
Log Len m Volume and Size Data Gross Merchantable m3 11306 11306 2011 843 7533 713 206 Net Merchantable m3 9728 9728 1747 539 6677 619 146 Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 1 Decay % 6 6 6 6 6 20 4 6 17 Waste % 2 2 2 2 9 1 2 9 1 2 5 Waste(billing) % 2 2 2 2 9 1 2 5 Breakage % 6 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8	Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Volume and Size Data Gross Merchantable m3 11306 11306 2011 843 7533 713 206 Net Merchantable m3 9728 9728 1747 539 6677 619 146 Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 1 Decay % 6 6 6 20 4 6 17 Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9	Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Gross Merchantable m3 11306 11306 2011 843 7533 713 206 Net Merchantable m3 9728 9728 1747 539 6677 619 146 Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 1 Decay % 6 6 6 6 20 4 6 17 Waste % 2 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 2 13 1 2 5 Breakage % 6 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8	Log Len m					10.0	10.0	10.0	10.0	10.0
Net Merchantable m3 9728 9728 1747 539 6677 619 146 Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 13 Decay % 6 6 6 20 4 6 17 Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8	olume and Size Data									
Net Merch - All m3/ha 853 853 153 47 586 54 13 Distribution % 100 100 18 6 69 6 13 Decay % 6 6 6 20 4 6 17 Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8	Gross Merchantable	m3				2011				206
Distribution % 100 100 18 6 69 6 17 Decay % 6 6 6 20 4 6 17 Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8										146
Decay % 6 6 20 4 6 17 Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8										13
Waste % 2 2 2 9 1 2 5 Waste(billing) % 2 2 2 13 1 2 7 Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8							-			1
Waste(billing)	-					-			-	17
Breakage % 6 6 5 7 6 5 7 Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8		-					-			5
Total Cull (DWB) % 14 14 13 36 11 13 29 Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8										7
Stems/Ha (Live & DP) 294.9 294.9 25.0 32.9 190.1 27.1 19.8	5	-								
	, ,	8								
λ_{trac} DDII / I $\dot{\tau}_{\text{trac}}$ CDD \ am = E7 0 = E7 0 \ 0.4 E 0 \ 2.6 (Avg DBH (Live & DP)	am	294.9 57.8	294.9 57.8		25.0 84.5	52.5	57.8	45.8	36.0
Avg DBH (Live & DP) cm 57.8 57.8 84.5 52.5 57.8 45.8 36.0 Snags/Ha	9 ,	Cili	57.0	57.0		04.5	52.5	57.0	45.0	30.0
Avg Snag DBH cm		Сm								
			3 36	3 36		7 05	2 25	3 48	2 31	0.91
										0.64
										28.2
	3 3									22.1
	3 3	m3						1.23	0.86	0.56
Avg 10.0 m Log Gross m3 1.28 1.28 1.70 1.01 1.30 0.93 0.73	Avg 10.0 m Log Gross	m3	1.28	1.28		1.70	1.01	1.30	0.93	0.73
	Avg # of 10.0 m Logs/	/Tree	2.63	2.63		4.14	2.23		2.48	1.26
Net Immature %	Net Immature	용								
Net 2nd Growth %		-								
Average Slope % 74		용	74							
Algorithm Grades %	-									
#2 Lum/#1 Lum F 3										
										42
#3 Sawlog I 16 16 17 9 17 17	3						-			0.4
#	9		16	16		3		1.7	19	31
#4 Shingle M 4			2.5	٥٦		1 =	_	20	0.4	0.77
#5 Utility U 25 25 15 20 28 24 27 #6 Utility X 1 1 2 1		-				15			24	27
#6 Utility X 1 1 1 2 1 47 Chipper Y 1 1 1 3 2 1						2				
#/ Chipper I I I Statistical Summary		ī	1	1		3	۷	1		
		9,	E 0 1	E0 1		110 0	155 2	60.2	100 2	301.5
		-								161.7
Number and Type of Plots MP = 16		~				03.3	03.2	32.3	50.,	101.7
Number of Potential Trees 79										
Plots/Ha 1.3										
Cruised Trees/Plot 4.9	Cruised Trees /Dlot		1 0							
Slope % Statistics	Cluised liees/Piot		4.9							

Min= 33, Max=140, CV=39.2, Std Error of Mean=7.3, 2SE%=20.9

BS- 3 , p17

Average Line Method Grades: MOF Computerized

Block Summary
FIZ: B
PSYU: Nootka

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp

AVCEUGE DIRE MECHOG

Project: AVCF

Computerized Decay Computerized Waste Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Net Area: Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [RW: 0.7]

		Total	Conifer	Decid	F	C	н	В	Y
Utilization Limits		10001	00112101	20014	-				-
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	668	668		117	49	440	50	11
Net Merchantable	m3	575	575		99	31	393	44	8
Net Merch - All	m3/ha	821	821		142	44	561	62	12
Distribution	% %	100 6	100		17 7	5	68	8 6	1 15
Decay Waste	%	2	6 2		3	21 8	4 1	2	15 5
Waste(billing)	8	2	2		3	13	1	2	6
Breakage	8	6	6		5	7	6	5	7
Total Cull (DWB)	8	14	14		15	37	11	14	27
Stems/Ha (Live & DP)	Ü	297.5	297.5		23.4	37.2	188.2	25.4	23.3
Avg DBH (Live & DP)	cm	56.9	56.9		85.2	49.3	57.2	49.9	32.8
Snags/Ha									
Avg Snag DBH	cm								
Gross Merch Vol/Tree	m3	3.21	3.21		7.11	1.89	3.34	2.83	0.70
Net Merch Vol/Tree	m3	2.76	2.76		6.06	1.20	2.98	2.45	0.51
Avg Weight Total Ht	m	38.7	38.7		45.7	35.7	37.6	38.4	26.5
Avg Weight Merch Ht	m	32.1	32.1		40.7	28.9	30.4	32.7	20.2
Avg 10.0 m Log Net	m3	1.15	1.15		1.55	0.64	1.21	0.99	0.48
Avg 10.0 m Log Gross		1.25	1.25		1.72	0.91	1.27	1.08	0.60
Avg # of 10.0 m Logs		2.56	2.56		4.13	2.07	2.63	2.63	1.18
Net Immature Net 2nd Growth	ર સ								
Average Slope	6 %	74							
Algorithm Grades %	6	/4							
#2 Lum/#1 Lum	F	1	1		3				
#2 Sawlog	H	40	40		60	30	37	42	36
#3 Sawlog	I	15	15		17	8	15	19	30
#4 Sawlog	J	17	17		2	34	19	13	40
#4 Shingle	M					3			
#5 Utility	U	25	25		15	21	28	26	24
#6 Utility	X	1	1			2	1		
#7 Chipper	Y	1	1		3	2			
Statistical Summary									
Coeff. of Variation	%	50.1	50.1		118.0	155.2	60.2	180.3	301.5
Two Standard Error	8	26.9	26.9		63.3	83.2	32.3	96.7	161.7
Number and Type of P.		MP =	Τ6						
Number of Potential	rrees	79 1.3							
Plots/Ha Cruised Trees/Plot		4.9							
Slope % Statistics		4.9							
prope & practicities									

Min= 33, Max=140, CV=39.2, Std Error of Mean=7.3, 2SE%=20.9

TS-1 , p18

Average Line Method

AVCF.

Licence Number: COMM CP: PRE Project: AVCF

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Net Area: Type 1 (M):HF 951, Plots in Type: 9, TUs: [All Treatment Units: 6.4]

		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits		10001	00112101	20010	-	0		2	-
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	7409	7409		1405	581	5124	134	165
Net Merchantable	m3	6355	6355		1298	383	4445	124	105
Net Merch - All	m3/ha	993	993		203	60	694	19	16
Distribution	8	100	100		20	6	70	2	2
Decay	용	6	6		2	18	6	2	22
Waste	왕	2	2		0	9	2	1	7
Waste(billing)	용	2	2		1	14	2	1	10
Breakage	ક	6	6		5	7	6	5	7
Total Cull (DWB)	ક	14	14		8	34	13	7	36
Stems/Ha (Live & DP)		283.6	283.6		32.1	14.2	198.3	34.3	4.8
Avg DBH (Live & DP)	cm	62.0	62.0		82.4	80.6	60.3	28.9	77.4
Snags/Ha									
Avg Snag DBH	cm								
Gross Merch Vol/Tree	m3	4.08	4.08		6.84	6.41	4.04	0.61	5.39
Net Merch Vol/Tree	m3	3.50	3.50		6.32	4.22	3.50	0.57	3.44
Avg Weight Total Ht	m	41.8	41.8		47.0	44.7	40.9	23.2	33.1
Avg Weight Merch Ht	m	34.9	34.9		41.7	37.4	33.5	15.1	27.8
Avg 10.0 m Log Net	m3	1.27	1.27		1.60	1.17	1.32	0.30	1.27
Avg 10.0 m Log Gross	m3	1.39	1.39		1.64	1.60	1.43	0.31	1.80
Avg # of 10.0 m Logs	/Tree	2.94	2.94		4.17	4.00	2.83	2.00	3.00
Net Immature	%								
Net 2nd Growth	8								
Algorithm Grades %									
#2 Sawlog	Н	44	44		62	51	37		60
#3 Sawlog	I	20	20		17	13	23		0.0
#4 Sawlog	J	12	12		4	9	12	100	
#4 Shingle	M				-	6	12	100	
#5 Utility	U	23	23		14	18	27		40
#6 Utility	X	23	23						
#7 Chipper	Y	1	1		3	3	1		
Statistical Summary									
Coeff. of Variation	ે	26.7	26.7		115.8	151.2	41.4	300.0	300.0
Two Standard Error	8	20.5	20.5		89.0	116.2	31.8	230.6	230.6
Number and Type of Pi	-	MP =	9				2_70		
Number of Potential		40							
Plots/Ha		1.4							
Cruised Trees/Plot		4.4							

TS-2, p19

Average Line Method

Project: AVCF

Licence Number: COMM CP: PRE

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Net Area: Type 1 (M):HF 951, Plots in Type: 9, TUs: [Block : 6.1]

		Total	Conifer	Decid	F	C	Н	В	Y
Utilization Limits					_				_
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	7062	7062		1339	554	4884	128	157
Net Merchantable	m3	6057	6057		1237	365	4236	118	100
Net Merch - All	m3/ha	993	993		203	60	694	19	16
Distribution	왕	100	100		20	6	70	2	2
Decay	왕	6	6		2	18	6	2	22
Waste	왕	2	2		0	9	2	1	7
Waste(billing)	왕	2	2		1	14	2	1	10
Breakage	왕	6	6		5	7	6	5	7
Total Cull (DWB)	%	14	14		8	34	13	7	36
Stems/Ha (Live & DP)		283.6	283.6		32.1	14.2	198.3	34.3	4.8
Avg DBH (Live & DP)	cm	62.0	62.0		82.4	80.6	60.3	28.9	77.4
Snags/Ha									
Avg Snag DBH	cm								
Gross Merch Vol/Tree	m3	4.08	4.08		6.84	6.41	4.04	0.61	5.39
Net Merch Vol/Tree	m3	3.50	3.50		6.32	4.22	3.50	0.57	3.44
Avg Weight Total Ht	m	41.8	41.8		47.0	44.7	40.9	23.2	33.1
Avg Weight Merch Ht	m	34.9	34.9		41.7	37.4	33.5	15.1	27.8
Avg 10.0 m Log Net	m3	1.27	1.27		1.60	1.17	1.32	0.30	1.27
Avg 10.0 m Log Gross	m3	1.39	1.39		1.64	1.60	1.43	0.31	1.80
Avg # of 10.0 m Logs	/Tree	2.94	2.94		4.17	4.00	2.83	2.00	3.00
Net Immature	왕								
Net 2nd Growth	%								
Alamaitha Garden O									
Algorithm Grades %	Н	44	44		62	51	37		60
#2 Sawlog #3 Sawlog	H I	20	20		62 17	13	23		00
#4 Sawlog	J	12	20 12		4	9	12	100	
#4 Sawlog #4 Shingle	M	12	12		4	6	12	100	
#5 Utility	U	23	23		14	18	27		40
#6 Utility	X	23	23		14	10	47		40
#7 Chipper	X Y	1	1		3	3	1		
Statistical Summary	1	1	1		3	3	Τ.		
Coeff. of Variation	%	26.7	26.7		115.8	151.2	41.4	300.0	300.0
Two Standard Error	% %	20.7	20.5		89.0	116.2	31.8	230.6	230.6
Number and Type of Pl	-	20.5 MP =	9		09.0	110.2	31.0	230.0	230.0
Number of Potential T		MP = 40	J.						
Plots/Ha	11669	1.4							
Cruised Trees/Plot		4.4							
Claibea liees/Fiot		7.7							

TS-3, p20

Average Line Method

AVCF

Licence Number: COMM CP: PRE Project: AVCF

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM
Filename: comm_for_blk2_LF_typed.ccp
Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Net Area: Type 1 (M):HF 951, Plots in Type: 9, TUs: [RW : 0.3]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits									
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	347	347		66	2.7	240	6	8
Net Merchantable	m3	298	298		61	18	208	6	5
Net Merch - All	m3/ha	993	993		203	60	694	19	16
Distribution	%	100	100		20	6	70	2	2
Decay	ૄ	6	6		2	18	6	2	22
Waste	8	2	2		0	9	2	1	7
Waste(billing)	%	2	2		1	14	2	1	10
Breakage	96	6	6		5	7	6	5	7
Total Cull (DWB)	96	14	14		8	34	13	7	36
Stems/Ha (Live & DP)	6	283.6	283.6		32.1	14.2	198.3	34.3	4.8
Avg DBH (Live & DP)		62.0	62.0		82.4	80.6	60.3	28.9	77.4
	cm	62.0	62.0		82.4	80.6	60.3	28.9	//.4
Snags/Ha									
Avg Snag DBH	cm	4 00	4 00		6 04	c 41	4 0 4	0 61	F 20
Gross Merch Vol/Tree		4.08	4.08		6.84	6.41	4.04	0.61	5.39
Net Merch Vol/Tree	m3	3.50	3.50		6.32	4.22	3.50	0.57	3.44
Avg Weight Total Ht	m	41.8	41.8		47.0	44.7	40.9	23.2	33.1
Avg Weight Merch Ht	m	34.9	34.9		41.7	37.4	33.5	15.1	27.8
Avg 10.0 m Log Net	m3	1.27	1.27		1.60	1.17	1.32	0.30	1.27
Avg 10.0 m Log Gross		1.39	1.39		1.64	1.60	1.43	0.31	1.80
Avg # of 10.0 m Logs		2.94	2.94		4.17	4.00	2.83	2.00	3.00
Net Immature	8								
Net 2nd Growth	%								
-1									
Algorithm Grades %		4.4			60	F-1	2.5		60
#2 Sawlog	H	44	44		62	51	37		60
#3 Sawlog	I	20	20		17	13	23		
#4 Sawlog	J	12	12		4	9	12	100	
#4 Shingle	M					6			
#5 Utility	U	23	23		14	18	27		40
#6 Utility	X								
#7 Chipper	Y	1	1		3	3	1		
Statistical Summary									
Coeff. of Variation	용	26.7	26.7		115.8	151.2	41.4	300.0	300.0
Two Standard Error	%	20.5	20.5		89.0	116.2	31.8	230.6	230.6
Number and Type of P	lots	MP =	9						
Number of Potential	Trees	40							
Plots/Ha		1.4							
Cruised Trees/Plot		4.4							

TS- 4 , p21

Average Line Method

AVCF

Project: AVCF

Licence Number: COMM CP: PRE

Grades: MOF Computerized Computerized Decay

Computerized Waste

Computerized Breakage

Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Net Area: Type 2 (M):HFC 941, Plots in Type: 7, TUs: [All Treatment Units: 5.7]

## Win DBH cm (M)			Total	Conifer	Decid	F	С	Н	В	Y
Stump Ht cm (M)	Utilization Limits						-			
Gross Merchantable m3 4564 4564 723 311 2849 629 53 Net Merchantable m3 3948 3948 548 188 2625 538 49 Net Merch - All m3/ha 693 693 96 33 461 94 9 Distribution % 100 100 14 5 66 14 1 Decay % 6 6 6 6 14 25 2 7 7 1 Waste % 2 2 2 5 8 0 2 Waste(billing) % 2 2 2 7 13 0 3 Breakage % 6 6 6 5 7 6 5 7 7 6 5 7 7 6 5 7 7 7 Total Cull (DWB) % 14 14 24 40 8 14 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) Cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH Gross Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Fors m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log Fors m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log STree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 ## 2 Lum/#1 Lum F 1 1 1 9 ## 2 Sawlog I 1 10 10 16 7 21 ## 2 Lum/#1 Lum F 1 1 1 1 5 1 ## 3 Sawlog I 1 10 10 16 7 21 ## 4 Sawlog J 22 22 69 27 100 ## 5 Utility U 27 27 27 17 26 30 30 ## 3 Sawlog I 1 10 10 16 7 21 ## 4 Sawlog J 22 22 69 27 100 ## 5 Utility W 1 27 27 27 17 26 30 30 30 ## 3 Sawlog I 1 1 1 1 1 5 1 ## 7 Chipper Y 1 1 1 1 5 1 ## 5 Chipper Y 1 1 1 1 5 1 ## 6 Chipmer Avg 1 1 1 1 1 5 1 ## 7 Chipper Y 1 1 1 1 5 1 ## 7 Chipper Y 1 1 1 1 5 1 ## 7 Chipper Y 1 1 1 1 5 1 ## 7 Chipper Plots MP = 7 Number and Type of Plots MP = 7 Number and Type of Plots MP = 7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha	Stump Ht cm (M) Top Dia cm (M) Log Len m					30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0	30.0 15.0
Net Merchantable m3 3948 3948 548 188 2625 538 49 Net Merch - All m3/ha 693 693 96 33 461 94 9 Distribution % 100 100 14 5 66 14 1 Decay % 6 6 6 14 25 2 7 1 Waste % 2 2 2 5 8 0 2 7 1 Waste(billing) % 2 2 2 7 1 3 0 3 Breakage % 6 6 5 5 7 6 5 5 7 Total Cull (DWB) % 14 14 24 40 8 14 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg 4 of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 6 69 27 100 #5 Utility U 27 27 77 17 26 30 30 #5 Utility W 1 1 1 1 5 1 #7 Chipper Y 1 1 4 Stems/Ha Lumary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha		2	4564	4564		E02	211	0040	600	F 2
Decay \$ 6 6 6 14 25 2 7 1 Waste \$ 2 2 2 5 8 0 2 Waste(billing) \$ 2 2 2 7 13 0 3 Breakage \$ 6 6 6 5 7 7 13 0 3 Breakage \$ 6 6 6 5 7 7 6 5 5 7 6 5 7 Total Cull (DWB) \$ 14 14 24 40 8 14 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.112 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature \$ Net Znd Growth \$ **Algorithm Grades ** #2 Lum/#1 Lum F 1 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 6 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 1 5 1 **Wet Znd Growth	Net Merchantable	m3	3948	3948		548	188	2625	538	49
Waste (billing) % 2 2 2 7 7 13 0 3 Breakage % 6 6 6 5 7 7 6 5 7 Total Cull (DWB) % 14 14 24 40 8 14 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg Weight Merch Ht m 29.1 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg H 0.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg H 0.1 0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 10 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 5 1 5 1 #7 Chipper Y 1 1 1 5 1 5 1 #7 Chipper Y 1 1 1 5 5 1 #7 Chipper Y 1 1 1 5 5 1 #7 Number and Type of Plots MP = 7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha	Distribution	%	100	100		14	5	66	14	1
Breakage	Waste	용	2	2		5	8	0	2	1
Total Cull (DWB)	, 3,									
Stems/Ha (Live & DP) 307.9 307.2										
Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net Immature % Net Znd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 9 12 22 24 69 27 100 #4 Sudious Metallity W 2 27 27 17 26 30 30 30 #6 Utility W 2 27 27 17 26 30 30 30 #6 Utility W 1 1 1 1 5 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha		8								
Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 1 9 1 10 10 16 7 21 40 100 10 16 7 21 100 100 16 7 21 100 100 16 7 21 100 100 16 7 21 100 100 16 7 21 100 100 16 7 21 100 100 100 16 7 21 100 100 100 100 100 100 100 100 100	Avg DBH (Live & DP)	cm								
Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #5 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 1 5 1 #7 Chipper Y 1 1 1 1 5 1 #7 Chipper Y 1 1 1 1 5 1 #7 Chipper Y 1 1 1 1 5 1 #T Chipper Y 1 1 1 1 5 1 Wratistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha										
Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 9 42 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Gross Merch Vol/Tree	m3								
Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9										
Avg 10.0 m Log Gross m3	Avg Weight Merch Ht	m	29.1	29.1		39.3	17.5	27.0	35.4	7.9
Net Immature	Avg 10.0 m Log Gross	m3	1.13	1.13		1.84	0.59	1.12	1.69	0.25
Net 2nd Growth			2.30	2.50		1.00	1.70	2.40	3.40	1.00
#2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2										
#2 Sawlog										
#3 Sawlog I 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2									4.0	
#4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2										
#5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 5 1 #7 Chipper Y 1 1 1 4 5 5 1 #7 Chipper Y 1 1 1 5 5 1 #7 Chipper Y 1 1 1 5 5 1 5 5 1 5 5 5 5 5 5 5 5 5 5						16	60		21	100
#6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2						17			2.0	100
#7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2									30	
Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2							3	1		
Two Standard Error	Statistical Summary									
Number and Type of Plots MP = 7 Number of Potential Trees 39 Plots/Ha 1.2										
Number of Potential Trees 39 Plots/Ha 1.2						95.3	141.6	81.0	123.5	244.7
= = * = * = * = * = * = * = * = * = * =	Number of Potential		39	7						

TS-5, p22

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage Type Summary FIZ: B

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Net Area: Type 2 (M):HFC 941, Plots in Type: 7, TUs: [Block: 5.3]

		Total	Conifer	Decid	F	С	Н	В	Y
Utilization Limits									
Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Log Len m					10.0	10.0	10.0	10.0	10.0
Volume and Size Data									
Gross Merchantable	m3	4244	4244		672	289	2649	585	49
Net Merchantable	m3	3671	3671		510	175	2441	501	45
Net Merch - All	m3/ha	693	693		96	33	461	94	9
Distribution	용	100	100		14	5	66	14	1
Decay	%	6	6		14	25	2	7	1
Waste	%	2	2		5	8	0	2	
Waste(billing)	윙	2	2		7	13	0	3	
Breakage	용	6	6		5	7	6	5	7
Total Cull (DWB)	8	14	14		24	40	8	14	8
Stems/Ha (Live & DP)	•	307.9	307.9		16.9	54.4	180.6	18.8	37.1
Avg DBH (Live & DP)	cm	53.1	53.1		88.9	40.5	54.4	68.9	24.5
Snags/Ha	0	33.1	33.1		00.5	10.5	51.1	00.5	21.5
Avg Snag DBH	cm								
Gross Merch Vol/Tree	m3	2.60	2.60		7.50	1.00	2.77	5.88	0.25
Net Merch Vol/Tree	m3	2.25	2.25		5.69	0.61	2.55	5.03	0.23
Avg Weight Total Ht	m	35.3	35.3		44.0	25.1	33.6	40.7	15.2
Avg Weight Merch Ht	m	29.1	29.1		39.3	17.5	27.0	35.4	7.9
Avg 10.0 m Log Net	m3	1.04	1.04		1.49	0.40	1.10	1.53	0.25
Avg 10.0 m Log Gross	m3	1.13	1.13		1.84	0.59	1.12	1.69	0.25
Avg # of 10.0 m Logs		2.30	2.30		4.08	1.70	2.46	3.48	1.00
Net Immature	% TICC	2.50	2.50		1.00	1.70	2.10	5.10	1.00
Net 2nd Growth	%								
NCC ZHA GIOWEH	0								
Algorithm Grades %									
#2 Lum/#1 Lum	F	1	1		9				
#2 Sawlog	H	38	38		53		35	49	
#3 Sawlog	I	10	10		16		7	21	
#4 Sawlog	J	22	22			69	27		100
#5 Utility	U	27	27		17	26	30	30	
#6 Utility	X	1	1		1	5	1		
#7 Chipper	Y	1	1		4				
Statistical Summary									
Coeff. of Variation	용	77.8	77.8		103.1	153.1	87.6	133.5	264.6
Two Standard Error	용	71.9	71.9		95.3	141.6	81.0	123.5	244.7
Number and Type of P		MP =	7						
Number of Potential	Trees	39							
Plots/Ha		1.2							
Cruised Trees/Plot		5.6							

TS-6, p23

Average Line Method

Licence Number: COMM CP: PRE Project: AVCF

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage Type Summary FIZ: B

> PSYU: Nootka Region: 2 - West Coast

District: 04 - South Island

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

28-Sep-2015 07:52:52PM

Net Area: Type 2 (M):HFC 941, Plots in Type: 7, TUs: [RW : 0.4]

Name			Total	Conifer	Decid	F	C	Н	В	Y
Stump Ht cm (M)	Utilization Limits		10001	001111101	20010	-	0			-
Top Dia cm (M) Log Len m Volume and Size Data Gross Merchantable m3 320 320 51 22 200 44 4 4 4	Min DBH cm (M)					17.5	17.5	17.5	17.5	17.5
Volume and Size Data Gross Merchantable m3 320 320 51 22 200 44 4 8 Net Merchantable m3 277 277 38 13 184 38 3 Net Merch - All m3/ha 693 693 96 33 461 94 9 Distribution % 100 100 14 5 66 14 1 Decay % 6 6 6 6 14 25 2 7 7 1 Waste % 2 2 2 5 8 0 2 7 Waste(billing) % 2 2 2 7 7 13 0 3 1 Waste(billing) % 3 2 7 2 7 7 13 0 3 9 Breakage % 6 6 6 5 7 6 6 5 7 7 6 5 7 7 Total Cull (DWB) % 14 14 24 40 8 14 8 8 14 8 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 3.5.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Noros m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log Sross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log Sross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of Growth % **Algorithm Grades % #2 Lum/#1 Lum F 1 1 1 9 #3 Sawlog I 1 10 10 10 16 6 7 21 10 10 10 16 8 10 10 10 16 16 8 7 21 10 10 10 10 16 8 10 10 10 10 16 8 10 10 10 10 16 8 10 10 10 10 10 10 10 10 10 10 10 10 10	Stump Ht cm (M)					30.0	30.0	30.0	30.0	30.0
Volume and Size Data Gross Merchantable m3 320 320 51 22 200 44 4 8 Net Merchantable m3 277 277 38 13 184 38 3 Net Merch - All m3/ha 693 693 96 33 461 94 9 Distribution % 100 100 14 5 66 14 1 Decay % 6 6 6 6 14 25 2 7 7 1 Waste % 2 2 2 5 8 0 2 7 Waste(billing) % 2 2 2 7 7 13 0 3 1 Waste(billing) % 3 2 7 2 7 7 13 0 3 9 Breakage % 6 6 6 5 7 6 6 5 7 7 6 5 7 7 Total Cull (DWB) % 14 14 24 40 8 14 8 8 14 8 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 3.5.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Noros m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log Sross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Log Sross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of Growth % **Algorithm Grades % #2 Lum/#1 Lum F 1 1 1 9 #3 Sawlog I 1 10 10 10 16 6 7 21 10 10 10 16 8 10 10 10 16 16 8 7 21 10 10 10 10 16 8 10 10 10 10 16 8 10 10 10 10 16 8 10 10 10 10 10 10 10 10 10 10 10 10 10	Top Dia cm (M)					15.0	15.0	15.0	15.0	15.0
Volume and Size Data Gross Merchantable m3 320 320 51 22 200 44 4 4 Net Merchantable m3 277 277 38 13 184 38 3 3 Net Merch - All m3/ha 693 693 96 33 461 94 9 9 Distribution % 100 100 14 5 66 14 1 1 1 1 1 1 1 1						10.0	10.0	10.0	10.0	10.0
Net Merchantable m3 277 277 388 13 184 38 3 Net Merch - All m3/ha 693 693 96 33 461 94 94 9 10stribution % 100 100 14 5 666 14 1 Decay % 6 6 6 6 14 25 2 7 7 1 Maste % 2 2 2 5 8 8 0 2 2 Maste(billing) % 2 2 2 5 5 8 0 0 2 Maste(billing) % 2 2 2 7 7 13 0 3 Breakage % 6 6 6 5 7 7 6 5 5 7 7 6 5 5 7 7 7 7 7 7	9									
Net Merch - All m3/ha 693 693 96 33 461 94 9	Gross Merchantable	m3	320	320		51	22	200	44	4
Net Merch - All m3/ha 693 693 96 33 461 94 9	Net Merchantable	m3	277	277		38	13	184	38	3
Decay	Net Merch - All	m3/ha	693	693		96	33	461	94	9
Waste 8 2 2 2 5 8 0 2 Waste(billing) % 2 2 2 7 13 0 3 Breakage % 6 6 6 5 7 6 6 5 7 Total Cull (DWB) % 14 14 24 40 8 14 8 Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 38 53 35 49 #3 Sawlog I 1 10 10 10 16 7 21 #4 Sawlog J 22 22 69 27 10 #5 Utility U 27 27 27 17 26 30 30 30 #5 Utility U 27 27 27 17 26 30 30 30 #5 Utility V X 1 1 1 1 1 5 1 5 1 #7 Chipper Y 1 1 1 1 1 5 1 5 1 #7 Chipper Y 1 1 1 1 1 5 5 1 #7 Chipper Y 7 1.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39	Distribution	%	100	100		14	5	66	14	1
Waste(billing)	Decay	%	6	6		14	25	2	7	1
Breakage	Waste	%	2	2		5	8	0	2	
Total Cull (DWB)	Waste(billing)	%	2	2		7	13	0	3	
Total Cull (DWB)	Breakage	%	6	6		5	7	6	5	7
Stems/Ha (Live & DP) 307.9 307.9 16.9 54.4 180.6 18.8 37.1 Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % ** Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog J 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 5 1 #7 Chipper Y 1 1 1 5 1 #7 Chipper Y 1 1 1 5 1 #5 Statistical Summary Coeff. of Variation % 77.8 77.8 77.8 77.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 7 Number and Type of Plots MP = 7 7 7 7 7 7 Number and Type of Plots MP = 7 7 7 7 7 7 7 Number of Potential Trees 39 7 7 7 7 7 7 7 7 7		%	14	14		24	40	8	14	8
Avg DBH (Live & DP) cm 53.1 53.1 88.9 40.5 54.4 68.9 24.5 Snags/Ha Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 1 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1			307.9	307.9		16.9	54.4	180.6	18.8	37.1
Snags/Ha		cm	53.1	53.1		88.9	40.5	54.4	68.9	24.5
Avg Snag DBH cm Gross Merch Vol/Tree m3 2.60 2.60 7.50 1.00 2.77 5.88 0.25 Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % ***Algorithm Grades *** #2 Lum/#1 Lum F 1 1 1 9 4 4 5.54 3.5 49 1.5 1.5 1 1.5 1.5 1 1.5 1.5 1 1.										
Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 27 17 26 30 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39	9	cm								
Net Merch Vol/Tree m3 2.25 2.25 5.69 0.61 2.55 5.03 0.23 Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 27 17 26 30 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39	Gross Merch Vol/Tree	m3	2.60	2.60		7.50	1.00	2.77	5.88	0.25
Avg Weight Total Ht m 35.3 35.3 44.0 25.1 33.6 40.7 15.2 Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg # of 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum			2.25	2.25		5.69	0.61	2.55	5.03	0.23
Avg Weight Merch Ht m 29.1 29.1 39.3 17.5 27.0 35.4 7.9 Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades %	Avg Weight Total Ht.	m	35.3	35.3		44.0	25.1	33.6	40.7	15.2
Avg 10.0 m Log Net m3 1.04 1.04 1.49 0.40 1.10 1.53 0.25 Avg 10.0 m Log Gross m3 1.13 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 100 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39		m	29.1	29.1		39.3	17.5	27.0	35.4	7.9
Avg 10.0 m Log Gross m3 1.13 1.13 1.84 0.59 1.12 1.69 0.25 Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades %		m3								0.25
Avg # of 10.0 m Logs/Tree 2.30 2.30 4.08 1.70 2.46 3.48 1.00 Net Immature % Net 2nd Growth % Algorithm Grades % #2 Lum/#1 Lum F 1 1 9										
Net Immature										
Net 2nd Growth	_									
#2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39										
#2 Lum/#1 Lum F 1 1 9 #2 Sawlog H 38 38 53 35 49 #3 Sawlog I 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39										
#2 Sawlog										
#3 Sawlog I 10 10 16 7 21 #4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39		_								
#4 Sawlog J 22 22 69 27 100 #5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39	_									
#5 Utility U 27 27 17 26 30 30 #6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 5 1 #7 Chipper Y 1 1 1 4 5 5 1 #7 Chipper Y 1 1 1 5 5 1 #7 Chipper Y 1 1 1 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5						16			21	
#6 Utility X 1 1 1 1 5 1 #7 Chipper Y 1 1 1 4 ** Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39	_	-								100
#7 Chipper Y 1 1 4 Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39		-							30	
Statistical Summary Coeff. of Variation % 77.8 77.8 103.1 153.1 87.6 133.5 264.6 Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39							5	1		
Coeff. of Variation		Y	1	1		4				
Two Standard Error % 71.9 71.9 95.3 141.6 81.0 123.5 244.7 Number and Type of Plots MP = 7 Number of Potential Trees 39										
Number and Type of Plots MP = 7 Number of Potential Trees 39										
Number of Potential Trees 39		-				95.3	141.6	81.0	123.5	244.7
				7						
D1 - + /II - 1 0		Trees								
	Plots/Ha		1.2							
Cruised Trees/Plot 5.6	Cruised Trees/Plot		5.6							

Licence Number: COMM CP: PRE

Volume Statistical Analysis

FIZ: B

Grades: MOF Computerized Average Line Method

Computerized Decay Computerized Waste

PSYU: Nootka Region: 2 - West Coast

Computerized Breakage

District: 04 - South Island

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

VLS- 1 , p24

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Utilization Levels:

Project: AVCF

Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 Immature Blocks:(cm) 12.0 30 10.0

Standard Log Length:(m) 10.00

Forest	Plots	Area Net Volum	e Proportional	Trees	Standard	Coeff. of	Sampling Error
Type	Cnt Mea Tot	ha m3/ha	Volume	Cnt Mea Tot	Deviation	Variation	1 SE% 2 SE%
1 :HF 951 2 :HFC 941 TOTAL	0 9 9 0 7 7 0 16 16	6.4 993.0 5.7 692.7 12.1 851.5	0.62 0.38	0 40 40 0 39 39 0 79 79	264.9657 538.7704	26.7 77.8 50.1	8.9 20.5 29.4 71.9 12.5 26.9

Number of live & dead potential trees sampled is 79

Number of dead useless trees sampled is 0

Number of live useless trees sampled is 0

The weighted sampling error is 26.9% at the 95% confidence level

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

Basal Area Statistical Analysis

FIZ: B

PSYU: Nootka

Grades: MOF Computerized

Computerized Decay Computerized Waste

Computerized Breakage

Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

BAS- 1 , p25

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Utilization Levels: Minimum DBH Top Diameter Stump Height

Mature Blocks: (cm) 17.5 15.0 Immature Blocks:(cm) 12.0 30 10.0

Standard Log Length: (m) 10.00

Forest	Plots	Area	Basal Area	Proportional	Trees	Standard	Coeff. of	Sampling	Error
Type	Cnt Mea Tot	ha	m2/ha	Basal Area	Cnt Mea Tot	Deviation	Variation	1 SE%	2 SE%
1 :HF 951 2 :HFC 941 TOTAL	0 9 9 0 7 7 0 16 16	6.4 5.7 12.1	85.6 68.3 77.4	0.58 0.42	0 40 40 0 39 39 0 79 79	26.3014 44.6507	30.7 65.4 47.6	10.2 24.7 11.9	23.6 60.5 25.5

Number of live & dead potential trees sampled is 79

Number of dead useless trees sampled is 0

Number of live useless trees sampled is 0

The weighted sampling error is 25.5% at the 95% confidence level

Average Line Method

Project: AVCF

AVCF

Cutting Permit Stand Table (stems/ha)

PSYU: Nootka

FIZ: B

Grades: MOF Computerized Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

[All Treatment Units : 12.1]

Licence Number: COMM CP: PRE

[AII IIEau	.menc onics	• 12.1								
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	n Limits	-	O		2	-	10041	22	20	20
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25						17.5	17.5			
30			11.1	15.6	18.1		44.8			
35			9.3	26.2			35.5			
40				22 5			22 5			
45 50				33.5 18.4			33.5 18.4	9.8		
55				11.8	3.4		15.2	3.3		
60		4.0		23.2	3.4		27.2	3.3		
65		3.4		8.3	2.4		14.1			
70		2.9	3.3	7.2			13.5			
75		1.8	1.9	16.9		2.5	23.1	1.8		
80			1.5	4.2	1.7		7.4	1.6		
85		2.1	1.3	2.0			5.4			
90		1.2		3.8	1.3		6.3			
95		1.7		2.9			4.6	1.7		
100		1.5		0.9			2.3			
105			1.4				1.4	1.3		
110		0.8		1.2			2.0			
115								1.1		
120		1 0					1 0			
125		1.0 0.6					1.0 0.6			
130 135		0.6					0.6			
140										
145										
150		0.4					0.4			
175										
200										
225										
250										
275										
Total		21.5	29.8	176.0	27.0	20.0	274.3			
Dead P		3.4	3.3	14.0				20.8		
Dead U										
Live U			_			- 1				
10 г.		05.5		rage DBH(c			F.C. 7	70.2		
12.5 + 17.5 +		85.5 85.5	51.9	56.6 56.6	46.0 46.0	35.8 35.8	56.7 56.7	70.3		
22.5 +		85.5	51.9 51.9	56.6	46.0	35.8	56.7	70.3 70.3		
27.5 +		85.5	51.9	56.6	46.0	77.4	58.3	70.3		
32.5 +		85.5	61.0	58.4	68.9	77.4	62.6	70.3		
		00.0	01.0	55.1	00.5		·-··			

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

CSTND- 1 , p26

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

Cutting Permit Stand Table (stems/ha)

PSYU: Nootka

Grades: MOF Computerized FIZ: B

Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Version: 2015.00 IFS build 5947

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:52:52PM

CSTND- 2 , p27

[Block : 11.4]

Project: AVCF

Average Line Method

[BIOCK · II.4	J								
	F	C	Н	В	Y	Total	DP	DU	LU
Utilization Li		_		_	_				
Min DBH cm		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm		15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20									
25					17.3	17.3			
30		10.9	15.7	18.4		45.0			
35		9.2	25.8			35.0			
40									
45			33.6			33.6			
50			18.4			18.4	9.8		
55			11.8	3.4		15.1	3.3		
60	4.1		23.3			27.4			
65	3.4		8.2	2.4		14.1			
70	3.0	3.4	7.2			13.6			
75	1.8	1.9	16.8		2.6	23.0	1.8		
80		1.5	4.2	1.7		7.4	1.6		
85	2.1		2.1			5.4			
90	1.2		3.8	1.3		6.3			
95	1.8		2.9			4.7	1.7		
100	1.5		0.9			2.4			
105		1.4				1.4	1.3		
110	0.8		1.2			2.0			
115							1.2		
120									
125	1.0					1.0			
130	0.6					0.6			
135									
140									
145									
150	0.4					0.4			
175									
200									
225									
250									
275									
Total	21.6	29.6	176.0	27.1	19.8	274.1			
Dead P	3.4	3.3	14.1				20.8		
Dead U									
Live U									
			rerage DBH						
12.5 +	85.4		56.6	45.8		56.8	70.4		
17.5 +	85.4		56.6	45.8	36.0	56.8	70.4		
22.5 +	85.4		56.6	45.8	36.0	56.8	70.4		
27.5 +	85.4		56.6	45.8	77.4	58.3	70.4		
32.5 +	85.4	61.2	58.5	68.9	77.4	62.7	70.4		

Licence Number: COMM CP: PRE

Cutting Permit Stand Table (stems/ha)

Grades: MOF Computerized FIZ: B

Grades: MOF Computerized Computerized Decay

Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM
Filename: comm_for_blk2_LF_typed.ccp
Compiled by: F Warren and Associates Ltd

CSTND- 3 , p28

Cruised by: AZMETH
Version: 2015.00 IFS build 5947

Project: AVCF
[RW : 0.7]

Average Line Method

[RW : 0.7]									
	F	С	Н	В	Y	Total	DP	DU	LU
Utilization Limit:		-							
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class 5									
10									
15									
20									
25					21.2	21.2			
30		13.4	12.6	14.7		40.7			
35		11.3	31.8			43.0			
40									
45			31.4			31.4			
50			18.3	4 1		18.3	9.5		
55 60	3.2		12.5 21.2	4.1		16.6 24.4	4.1		
65	2.8		8.6	3.0		14.3			
70	2.4	2.7	7.5	3.0		12.6			
75	2.2	2.3	18.2		2.0	24.8	2.2		
80	2.2	1.2	4.1	2.1	2.0	7.4	1.9		
85	1.7	1.1	1.6			4.4			
90	1.5		3.1	1.5		6.1			
95	1.4		2.8			4.2	1.4		
100	1.2		0.7			1.9			
105	1 0	1.1	1 0			1.1	1.1		
110 115	1.0		1.0			2.0	0.9		
120							0.9		
125	0.8					0.8			
130	0.7					0.7			
135									
140									
145									
150	0.3					0.3			
175									
200									
225 250									
275									
Total	19.3	33.1	175.3	25.4	23.3	276.3			
Dead P	4.2	4.1	12.9				21.2		
Dead U									
Live U									
			rage DBH(c						
12.5 +	86.6	48.4	56.2	49.9	32.8	55.9	68.8		
17.5 +	86.6	48.4	56.2	49.9	32.8	55.9	68.8		
22.5 +	86.6	48.4	56.2	49.9	32.8	55.9	68.8		
27.5 + 32.5 +	86.6 86.6	48.4 57.4	56.2 57.7	49.9 68.9	$77.4 \\ 77.4$	57.7 61.6	68.8 68.8		
52.5	00.0	37.1	51.1	00.5	//.1	01.0	00.0		

Average Line Method

Project: AVCF

AVCF

CSTCK- 1 , p29

Cutting Permit Stock Table (m3/ha)

FIZ: B

Grades: MOF Computerized

Computerized Decay
Computerized Waste

Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

[All Treatment Units : 12.1]

Licence Number: COMM CP: PRE

[AII Ireau	ment units	5 · 12.1]								
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25						4.0	4.0			
30			4.5	10.2	10.3		25.0			
35			4.6	19.6			24.2			
40										
45				45.3			45.3	15.0		
50				40.5	11 8		40.5	15.8		
55				35.2	11.7		47.0	3.3		
60		11.1		74.0	10 6		85.1			
65		12.2	0 5	39.3	10.6		62.1			
70		12.3	9.5	34.6		0.7	56.4	4.0		
75 80		8.2	3.1	97.6	0 0	8.7	117.6			
85		16.1	6.0 6.1	19.2 16.6	9.0		34.1 38.9	4.3		
90		10.1	0.1	34.3	13.2		57.6			
95		14.9		28.9	13.2		43.8	12.9		
100		16.3		10.1			26.4	12.9		
105		10.5	10.0	10.1			10.0	13.6		
110		8.9	10.0	21.2			30.1	13.0		
115		0.5					30.1	15.2		
120								10.2		
125		14.7					14.7			
130		9.8					9.8			
135										
140										
145										
150		9.7					9.7			
175										
200										
225										
250										
275										
Total		144.3	43.8	526.8	54.8	12.7	782.4			
Dead P		8.3	3.3	57.5		_		69.1		
				al Volumes						
17.5 +		144.3	43.8	526.8	54.8	12.7	782.4	69.1		
22.5 +		144.3	43.8	526.8	54.8	12.7	782.4	69.1		
27.5 +		144.3	43.8	526.8	54.8	8.7	778.3	69.1		
32.5 +		144.3	39.3	516.5	44.5	8.7	753.3	69.1		
37.5 +		144.3	34.7	496.9	44.5	8.7	729.1	69.1		
42.5 +		144.3	34.7	496.9	44.5	8.7	729.1	69.1		
47.5 +		144.3	34.7	451.6	44.5	8.7	683.7	69.1		

Licence Number: COMM CP: PRE

CSTCK- 2 , p30

Cutting Permit Stock Table (m3/ha)

FIZ: B

Grades: MOF Computerized

Computerized Breakage

Computerized Decay Computerized Waste

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

[Block : 11.4]

Project: AVCF

AVCF

Average Line Method

BIOCK .	11.4									
		F	С	Н	В	Y	Total	DP	DU	I
tilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15										
20										
25						4.0	4.0			
30			4.5	10.3	10.4		25.2			
35			4.5	19.4	10.1		23.9			
40			1.5	10.1			23.5			
45				45.5			45.5			
50				40.5			40.5	15.9		
					11 6					
55		11.0		35.2	11.6		46.7	3.3		
60		11.2		74.4	10 5		85.6			
65		12.4		39.2	10.5		62.1			
70		12.4	9.6	34.5			56.6			
75		8.1	3.0	97.1		8.8	117.1	3.9		
80			6.0	19.2	8.9		34.1	4.3		
85		16.3	6.2	16.8			39.3			
90		10.0		34.7	13.0		57.7			
95		15.0		29.0			44.0	13.1		
100		16.5		10.3			26.7			
105			10.1				10.1	13.8		
110		8.8		21.5			30.3			
115								15.4		
120										
125		14.8					14.8			
130		9.6					9.6			
135		,,,					,			
140										
145										
150		9.8					9.8			
175		9.0					9.0			
200										
225										
250										
275		145 0	44.0	F07 6	F4 2	10 0	702.0			
otal_		145.0	44.0	527.6	54.3	12.8	783.8			
ead P		8.2	3.3	58.1		,		69.5		
				al Volumes			=			
7.5 +		145.0	44.0	527.6	54.3	12.8	783.8	69.5		
2.5 +		145.0	44.0	527.6	54.3	12.8	783.8	69.5		
7.5 +		145.0	44.0	527.6	54.3	8.8	779.8	69.5		
2.5 +		145.0	39.5	517.3	43.9	8.8	754.6	69.5		
		145.0	35.0	497.9	43.9	8.8	730.7	69.5		
7.5 + 2.5 +		145.0	35.0	497.9	43.9	8.8	730.7	69.5		

Licence Number: COMM CP: PRE

Cutting Permit Stock Table (m3/ha)

Grades: MOF Computerized FIZ: B

Grades: MOF Computerized
Computerized Decay

Computerized Waste
Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island 28-Sep-2015 07:52:52PM
Filename: comm_for_blk2_LF_typed.ccp
Compiled by: F Warren and Associates Ltd

CSTCK- 3 , p31

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Project: AVCF
[RW : 0.7]

AVCF

Average Line Method

[RW · U./]									
	F	С	Н	В	Y	Total	DP	DU	LU
Utilization Limits									
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20					4.9	4.9			
25 30		5.5	8.3	8.3	4.9	22.1			
35		5.6	23.8	0.3		29.4			
40		5.0	23.0			29.4			
45			43.1			43.1			
50			39.7			39.7	14.7		
55			36.5	14.2		50.7	4.1		
60	9.0		66.5	11.2		75.4	1.1		
65	9.9		40.0	12.9		62.8			
70	10.0	7.7	35.8			53.4			
75	10.0	3.7	104.7		7.1	125.5	4.8		
80		4.8	19.2	10.9		34.9	5.3		
85	13.1	5.0	13.5			31.5			
90	12.3		27.8	16.0		56.1			
95	12.0		28.0			40.0	10.5		
100	13.2		8.2			21.4			
105		8.1				8.1	11.0		
110	10.8		17.2			28.0			
115							12.3		
120									
125	11.9					11.9			
130	11.8					11.8			
135									
140									
145 150	7.9					7.9			
175	7.9					7.9			
200									
225									
250									
275									
otal	131.8	40.4	512.3	62.3	11.9	758.7			
Dead P	10.1	4.1	48.5				62.6		
			al Volumes	for 7 L	evels				
17.5 +	131.8	40.4	512.3	62.3	11.9	758.7	62.6		
22.5 +	131.8	40.4	512.3	62.3	11.9	758.7	62.6		
27.5 +	131.8	40.4	512.3	62.3	7.1	753.8	62.6		
32.5 +	131.8	34.9	504.0	54.0	7.1	731.7	62.6		
37.5 +	131.8	29.4	480.2	54.0	7.1	702.4	62.6		
12.5 +	131.8	29.4	480.2	54.0	7.1	702.4	62.6		
47.5 +	131.8	29.4	437.0	54.0	7.1	659.2	62.6		

CBASL- 1 , p32

Cutting Permit Basal Area Table (m2/ha)

Average Line Method

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

[All Treatment Units : 12.1]

Licence Number: COMM CP: PRE

AVCF

Project: AVCF

	ment units									
		F	С	Н	В	Y	Total	DP	DU	L
Jtilizatio										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH										
lass										
5										
10										
15										
20										
25						0.8	0.8			
30			0.8	1.2	1.2		3.2			
35			0.8	2.5			3.3			
40										
45				5.2			5.2			
50				3.6			3.6	2.0		
55				2.8	0.8		3.7	0.8		
60		1.2		6.4			7.6			
65		1.2		2.8	0.8		4.9			
70		1.2	1.2	2.8			5.2			
75		0.8	0.8	7.3		1.2	10.2	0.8		
80			0.7	2.0	0.8		3.6	0.8		
85		1.2	0.7	1.2			3.1			
90		0.8		2.4	0.8		4.0			
95		1.2		2.0			3.2	1.2		
100		1.2		0.7			1.9			
105			1.2				1.2	1.2		
110		0.8		1.2			2.0			
115								1.2		
120										
125		1.2					1.2			
130		0.8					0.8			
135										
140										
145										
150		0.7					0.7			
175										
200										
225										
250										
275										
otal		12.3	6.3	44.2	4.5	2.0	69.3			
ead P		1.6	0.8	5.6				8.1		
ead U										
ive U							_			
				age Basal						
2.5 +		12.3	6.3	44.2	4.5	2.0		8.1		
7.5 +		12.3	6.3	44.2	4.5	2.0	69.3	8.1		
2.5 +		12.3	6.3	44.2	4.5	2.0		8.1		
7 .		12.3	6.3	44.2	4.5	1.2	68.5	8.1		
27.5 + 32.5 +		12.3	5.5	43.0	3.3	1.2	65.3	8.1		

Licence Number: COMM CP: PRE

Cutting Permit Basal Area Table (m2/ha)

OF Computerized FIZ: B

Grades: MOF Computerized

Computerized Decay Computerized Waste Computerized Breakage PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

CBASL- 2 , p33

Version: 2015.00 IFS build 5947

28-Sep-2015 07:52:52PM

[Block : 11.4]

Project: AVCF

Average Line Method

[DIOCK · .	11.1									
		F	С	Н	В	Y	Total	DP	DU	LU
Utilization	n Limits	_	_		_	_				
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25						0.8	0.8			
30			0.8	1.2	1.2		3.2			
35			0.8	2.4			3.3			
40				F 0			5 0			
45				5.2			5.2	2.0		
50 55				3.6	0 0		3.6	2.0		
60		1.2		2.8	0.8		3.6 7.6	0.8		
65		1.2		6.4 2.8	0.8		4.8			
70		1.2	1.2	2.8	0.0		5.2			
75		0.8	0.8	7.3		1.2	10.1	0.8		
80		0.0	0.7	2.0	0.8	1.2	3.6	0.8		
85		1.2	0.7	1.2	0.0		3.1	0.0		
90		0.8	• • •	2.4	0.8		4.0			
95		1.2		2.0			3.2	1.2		
100		1.2		0.7			1.9			
105			1.2				1.2	1.2		
110		0.8		1.2			2.0			
115								1.2		
120										
125		1.2					1.2			
130		0.8					0.8			
135										
140										
145										
150		0.7					0.7			
175										
200 225										
250										
275										
Total		12.4	6.3	44.2	4.5	2.0	69.4			
Dead P		1.6	0.8	5.6	1.5	2.0	05.1	8.1		
Dead U		2.0	0.0	3.0				0.1		
Live U										
			Avei	rage Basal	Area (m2	2) at 5 L	evels			
12.5 +		12.4	6.3	44.2	4.5	2.0	69.4	8.1		
17.5 +		12.4	6.3	44.2	4.5	2.0	69.4	8.1		
22.5 +		12.4	6.3	44.2	4.5	2.0	69.4	8.1		
27.5 +		12.4	6.3	44.2	4.5	1.2	68.6	8.1		
32.5 +		12.4	5.5	43.0	3.3	1.2	65.4	8.1		

Licence Number: COMM CP: PRE

Cutting Permit Basal Area Table (m2/ha)

FIZ: B

Grades: MOF Computerized

Computerized Breakage

Computerized Decay Computerized Waste

PSYU: Nootka Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

CBASL- 3 , p34

Version: 2015.00 IFS build 5947

Project: AVCF [RW : 0.7]

AVCF

Average Line Method

[KW . 0.7	J									
		F	C	Н	В	Y	Total	DP	DU	LU
Jtilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH										
Class										
5										
10										
15										
20						1 0	1 0			
25			1 0	1 0	1 0	1.0	1.0			
30 35			1.0	1.0	1.0		2.9 4.0			
40			1.0	3.0			4.0			
45				4.9			4.9			
50				3.5			3.5	2.0		
55				3.0	1.0		4.0	1.0		
60		1.0		5.9	1.0		6.8	1.0		
65		1.0		3.0	1.0		4.9			
70		1.0	1.0	3.0			4.9			
75		1.0	1.0	7.9		1.0	10.9	1.0		
80			0.6	2.0	1.0		3.5	1.0		
85		1.0	0.6	1.0			2.5			
90		1.0		1.9	1.0		3.9			
95		1.0		2.0			2.9	1.0		
100		1.0		0.6			1.5			
105			1.0				1.0	1.0		
110		1.0		1.0			2.0			
115								1.0		
120										
125		1.0					1.0			
130		1.0					1.0			
135										
140 145										
150		0.6					0.6			
175		0.0					0.0			
200										
225										
250										
275										
Total		11.3	6.1	43.5	5.0	2.0	67.8			
Dead P		2.0	1.0	4.9				7.9		
Dead U										
Live U										
				rage Basal						
12.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
17.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
22.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
27.5 +		11.3	6.1	43.5	5.0	1.0	66.8	7.9		
32.5 +		11.3	5.1	42.5	4.0	1.0	63.9	7.9		

Average Line Method

AVCF

Block Stand Table (stems/ha)

PSYU: Nootka

FIZ: B

Grades: MOF Computerized Computerized Decay

Computerized Waste Region: 2 - West Coast

Licence Number: COMM CP: PRE Project: AVCF Computerized Breakage District: 04 - South Island

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [All Treatment Units: 12.1]

BIOCK · (II	1) - 002.13.	IOCK Z, FIO	CS III DI	OCK. 10,	105. [A]	ii iieaciii	enc onics	• 12.1	j	
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20						17 5	17.5			
25 30			11 1	15 6	10 1	17.5	17.5 44.8			
35			11.1 9.3	15.6 26.2	18.1		35.5			
40			9.3	20.2			35.5			
45				33.5			33.5			
50				18.4			18.4	9.8		
55				11.8	3.4		15.2	3.3		
60		4.0		23.2	3.4		27.2	3.3		
65		3.4		8.3	2.4		14.1			
70		2.9	3.3	7.2			13.5			
75		1.8	1.9	16.9		2.5	23.1	1.8		
80		_,,	1.5	4.2	1.7		7.4	1.6		
85		2.1	1.3	2.0			5.4			
90		1.2		3.8	1.3		6.3			
95		1.7		2.9			4.6	1.7		
100		1.5		0.9			2.3			
105			1.4				1.4	1.3		
110		0.8		1.2			2.0			
115								1.1		
120										
125		1.0					1.0			
130		0.6					0.6			
135										
140										
145		0 4					0.4			
150		0.4					0.4			
175 200										
225										
250										
275										
Total		21.5	29.8	176.0	27.0	20.0	274.3			
Dead P		3.4	3.3	14.0	27.0	20.0	271.5	20.8		
Dead U		3.1	3.3	11.0				20.0		
Live U										
22,00			Ave	rage DBH(c	m) at 5 I	Levels				
12.5 +		85.5	51.9	56.6	46.0	35.8	56.7	70.3		
17.5 +		85.5	51.9	56.6	46.0	35.8	56.7	70.3		
22.5 +		85.5	51.9	56.6	46.0	35.8	56.7	70.3		
27.5 +		85.5	51.9	56.6	46.0	77.4	58.3	70.3		
32.5 +		85.5	61.0	58.4	68.9	77.4	62.6	70.3		

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

BSTND- 1 , p35

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Stand Table (stems/ha)

PSYU: Nootka

es: MOF Computerized FIZ: B

Grades: MOF Computerized
Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [Block: 11.4]

,	,	, -			•		•			
		F	C	Н	В	Y	Total	DP	DU	LU
Utilizatio										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20						17 2	17 2			
25 30			10.9	15.7	18.4	17.3	17.3 45.0			
35			9.2	25.8	10.4		35.0			
40			9.4	25.0			35.0			
45				33.6			33.6			
50				18.4			18.4	9.8		
55				11.8	3.4		15.1	3.3		
60		4.1		23.3	3.1		27.4	3.3		
65		3.4		8.2	2.4		14.1			
70		3.0	3.4	7.2			13.6			
75		1.8	1.9	16.8		2.6	23.0	1.8		
80			1.5	4.2	1.7		7.4	1.6		
85		2.1	1.3	2.1			5.4			
90		1.2		3.8	1.3		6.3			
95		1.8		2.9			4.7	1.7		
100		1.5		0.9			2.4			
105			1.4				1.4	1.3		
110		0.8		1.2			2.0			
115								1.2		
120										
125		1.0					1.0			
130		0.6					0.6			
135										
140										
145 150		0 4					0 4			
175		0.4					0.4			
200										
225										
250										
275										
Total		21.6	29.6	176.0	27.1	19.8	274.1			
Dead P		3.4	3.3	14.1				20.8		
Dead U										
Live U										
			Ave	rage DBH(c	m) at 5 I	Levels				
12.5 +		85.4	52.1	56.6	45.8	36.0	56.8	70.4		
17.5 +		85.4	52.1	56.6	45.8	36.0	56.8	70.4		
22.5 +		85.4	52.1	56.6	45.8	36.0	56.8	70.4		
27.5 +		85.4	52.1	56.6	45.8	77.4	58.3	70.4		
32.5 +		85.4	61.2	58.5	68.9	77.4	62.7	70.4		

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright® 1996-2015, Industrial Forestry Service Ltd.

BSTND- 2 , p36

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Stand Table (stems/ha)

BSTND- 3 , p37

28-Sep-2015 07:52:52PM

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [RW: 0.7]

		F	С	H	В	Y	Total	DP	DU	LU
Utilizatio										
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25						21.2	21.2			
30			13.4	12.6	14.7		40.7			
35			11.3	31.8			43.0			
40			11.5	31.0			13.0			
45				31.4			31.4			
50				18.3			18.3	9.5		
55				12.5	4.1		16.6	4.1		
60		3.2		21.2	4.1		24.4	∓. ⊥		
65		2.8		8.6	3.0		14.3			
			0.7		3.0					
70		2.4	2.7	7.5		0 0	12.6	0 0		
75		2.2	2.3	18.2		2.0	24.8	2.2		
80			1.2	4.1	2.1		7.4	1.9		
85		1.7	1.1	1.6			4.4			
90		1.5		3.1	1.5		6.1			
95		1.4		2.8			4.2	1.4		
100		1.2		0.7			1.9			
105			1.1				1.1	1.1		
110		1.0		1.0			2.0			
115								0.9		
120										
125		0.8					0.8			
130		0.7					0.7			
135										
140										
145										
150		0.3					0.3			
175										
200										
225										
250										
275										
Total		19.3	33.1	175.3	25.4	23.3	276.3			
Dead P		4.2	4.1	12.9	23.4	43.3	2/0.3	21.2		
Dead U		4.4	4.1	14.9				21.2		
Live U			7	DDII/-	\					
10 5		06.6		rage DBH(c			FF 0	60.0		
12.5 +		86.6	48.4	56.2	49.9	32.8	55.9	68.8		
17.5 +		86.6	48.4	56.2	49.9	32.8	55.9	68.8		
22.5 +		86.6	48.4	56.2	49.9	32.8	55.9	68.8		
27.5 +		86.6	48.4	56.2	49.9	77.4	57.7	68.8		
32.5 +		86.6	57.4	57.7	68.9	77.4	61.6	68.8		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Stock Table (m3/ha)

28-Sep-2015 07:52:52PM

Grades: MOF Computerized FIZ: B Computerized Decay

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

BSTCK- 1 , p38

Version: 2015.00 IFS build 5947

Block: (M) - 002:Block 2. Plots in Block: 16. TUS: [All Treatment Units: 12.1]

Computerized Waste

Computerized Breakage

Block : (M)	- 002:B	lock 2, Plo	ts in Bl	ock: 16,	TUs: [A	ll Treatme	ent Units	: 12.1		
		F	С	Н	В	Y	Total	DP	DU	LU
Utilization		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Min DBH Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m (11)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20 25						4.0	4.0			
30			4.5	10.2	10.3	4.0	25.0			
35			4.6	19.6	10.5		24.2			
40			1.0							
45				45.3			45.3			
50				40.5			40.5	15.8		
55				35.2	11.7		47.0	3.3		
60		11.1		74.0			85.1			
65		12.2	0 5	39.3	10.6		62.1			
70 75		12.3 8.2	9.5 3.1	34.6 97.6		8.7	56.4 117.6	4.0		
80		0.2	6.0	19.2	9.0	0.7	34.1	4.3		
85		16.1	6.1	16.6	5.0		38.9	1.5		
90		10.1		34.3	13.2		57.6			
95		14.9		28.9			43.8	12.9		
100		16.3		10.1			26.4			
105			10.0				10.0	13.6		
110		8.9		21.2			30.1	15.0		
115 120								15.2		
125		14.7					14.7			
130		9.8					9.8			
135										
140										
145										
150		9.7					9.7			
175										
200 225										
250										
275										
Total		144.3	43.8	526.8	54.8	12.7	782.4			
Dead P		8.3	3.3	57.5				69.1		
				al Volumes						
17.5 +		144.3	43.8	526.8	54.8	12.7	782.4	69.1		
22.5 +		144.3	43.8	526.8	54.8	12.7	782.4	69.1		
27.5 +		144.3	43.8	526.8	54.8	8.7	778.3	69.1		
32.5 + 37.5 +		144.3 144.3	39.3 34.7	516.5 496.9	44.5 44.5	8.7 8.7	753.3 729.1	69.1 69.1		
42.5 +		144.3	34.7	496.9	44.5	8.7	729.1	69.1		
47.5 +		144.3	34.7	451.6	44.5	8.7	683.7	69.1		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Stock Table (m3/ha)

able (m3/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized FIZ: B
Computerized Decay PSYU: N

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

BSTCK- 2 , p39

Version: 2015.00 IFS build 5947

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [Block: 11.4]

SIOCK · (M,) - 002.81	OCK 2, PIC	ous in Bi	OCK. 16,	10S. [.	BIOCK · I	1.4]			
		F	С	Н	В	Y	Total	DP	DU	I
Itilization	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15										
20										
25						4.0	4.0			
30			4.5	10.3	10.4		25.2			
35			4.5	19.4			23.9			
40										
45				45.5			45.5			
50				40.5			40.5	15.9		
55				35.2	11.6		46.7	3.3		
60		11.2		74.4			85.6			
65		12.4		39.2	10.5		62.1			
70		12.4	9.6	34.5			56.6			
75		8.1	3.0	97.1		8.8	117.1	3.9		
80			6.0	19.2	8.9		34.1	4.3		
85		16.3	6.2	16.8			39.3			
90		10.0		34.7	13.0		57.7			
95		15.0		29.0			44.0	13.1		
100		16.5		10.3			26.7			
105			10.1				10.1	13.8		
110		8.8		21.5			30.3			
115								15.4		
120								23.1		
125		14.8					14.8			
130		9.6					9.6			
135		5.0					5.0			
140										
145										
150		9.8					9.8			
175		7.0					7.0			
200										
225										
250										
275										
otal		145.0	44.0	527.6	54.3	12.8	783.8			
ead P		8.2	3.3	58.1	51.5		,00.0	69.5		
cuu i		0.2		al Volumes	s for 7 L	evels		03.3		
7.5 +		145.0	44.0	527.6	54.3	12.8	783.8	69.5		
		145.0	44.0	527.6	54.3	12.8	783.8	69.5		
25+			11.0			8.8	779.8	69.5		
			44 0	527 6	54 2					
7.5 +		145.0	44.0	527.6 517.3	54.3					
7.5 + 2.5 +		145.0 145.0	39.5	517.3	43.9	8.8	754.6	69.5		
2.5 + 7.5 + 2.5 + 7.5 + 2.5 +		145.0								

Computerized Waste

Computerized Breakage

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Stock Table (m3/ha)

PSYU: Nootka

FIZ: B

Grades: MOF Computerized Computerized Decay

Computerized Waste Region: 2 - West Coast Computerized Breakage District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

BSTCK- 3 , p40

28-Sep-2015 07:52:52PM

Block: (M) -	- 002:Block 2,	Plots in Block:	16,	TUs: [RW : 0.7]

TOCK · (M) - UUZ·B.	IOCK Z, PIC	ous in Bi	OCK. 16,	10S. []	RW • 0.7	J			
		F	С	Н	В	Y	Total	DP	DU	I
tilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
lass										
5										
10										
15										
20										
25						4.9	4.9			
30			5.5	8.3	8.3		22.1			
35			5.6	23.8			29.4			
40										
45				43.1			43.1			
50				39.7			39.7	14.7		
55				36.5	14.2		50.7	4.1		
60		9.0		66.5	-		75.4	-		
65		9.9		40.0	12.9		62.8			
70		10.0	7.7	35.8	12.7		53.4			
75		10.0	3.7	104.7		7.1	125.5	4.8		
		10.0			100	/.1				
80		10 1	4.8	19.2	10.9		34.9	5.3		
85		13.1	5.0	13.5			31.5			
90		12.3		27.8	16.0		56.1			
95		12.0		28.0			40.0	10.5		
100		13.2		8.2			21.4			
105			8.1				8.1	11.0		
110		10.8		17.2			28.0			
115								12.3		
120										
125		11.9					11.9			
130		11.8					11.8			
135		11.0					11.0			
140										
145										
		7.0					7 0			
150		7.9					7.9			
175										
200										
225										
250										
275										
otal		131.8	40.4	512.3	62.3	11.9	758.7			
ead P		10.1	4.1	48.5				62.6		
			Tot	al Volumes	for 7 L	evels				
7.5 +		131.8	40.4	512.3	62.3	11.9	758.7	62.6		
2.5 +		131.8	40.4	512.3	62.3	11.9	758.7	62.6		
7.5 +		131.8	40.4	512.3	62.3	7.1	753.8	62.6		
		131.8	34.9	504.0	54.0	7.1	731.7 702.4	62.6 62.6		
2.5 + 7.5 +		131.8	29.4	480.2	54.0	7.1				
		131.8 131.8 131.8	29.4 29.4 29.4	480.2 480.2 437.0	54.0 54.0	7.1 7.1 7.1	702.4	62.6 62.6		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Basal Area Table (m2/ha)

BBASL- 1 , p41

28-Sep-2015 07:52:52PM

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Version: 2015.00 IFS build 5947

Compiled by: F Warren and Associates Ltd

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [All Treatment Units: 12.1]

BIOCK · (M	1) –	002.8100	X 2, PIO	cs in Bio	CK. 16,	IUS. [AI	ı ireatii	ent Units	• 12.1]		
			F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	n Li	mits									
Min DBH	cm	(M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm	(M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm	(M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH											
Class											
5											
10											
15											
20							0 0	0 0			
25 30				0.8	1.2	1.2	0.8	0.8 3.2			
35				0.8	2.5	1.2		3.3			
40				0.0	2.5			3.3			
45					5.2			5.2			
50					3.6			3.6	2.0		
55					2.8	0.8		3.7	0.8		
60			1.2		6.4			7.6			
65			1.2		2.8	0.8		4.9			
70			1.2	1.2	2.8			5.2			
75			0.8	0.8	7.3		1.2	10.2	0.8		
80				0.7	2.0	0.8		3.6	0.8		
85			1.2	0.7	1.2			3.1			
90			0.8		2.4	0.8		4.0	1 0		
95 100			1.2 1.2		2.0 0.7			3.2 1.9	1.2		
105			1.2	1.2	0.7			1.2	1.2		
110			0.8	1.2	1.2			2.0	1.2		
115			0.0					2.0	1.2		
120											
125			1.2					1.2			
130			0.8					0.8			
135											
140											
145											
150 175			0.7					0.7			
200											
225											
250											
275											
Total			12.3	6.3	44.2	4.5	2.0	69.3			
Dead P			1.6	0.8	5.6				8.1		
Dead U											
Live U											
					age Basal						
12.5 +			12.3	6.3	44.2	4.5	2.0	69.3	8.1		
17.5 +			12.3	6.3	44.2	4.5	2.0	69.3	8.1		
22.5 +			12.3	6.3	44.2	4.5	2.0	69.3	8.1		
27.5 +			12.3	6.3	44.2	4.5	1.2	68.5	8.1		
32.5 +			12.3	5.5	43.0	3.3	1.2	65.3	8.1		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Basal Area Table (m2/ha)

Grades: MOF Computerized FIZ: B

Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:52:52PM

BBASL- 2 , p42

Version: 2015.00 IFS build 5947

Block: (M) - 002:Block 2, Plots in Block: 16, TUS: [Block: 11.4]

10011 (11)	002.01	OCK Z, PIC	CS III DIC	JCIL. 10,	IUS. [E	JOCK - I	1.1]			
		F	С	Н	В	Y	Total	DP	DU	I
tilization	Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15										
20										
						0 0	0 0			
25			0 0	1 0	1 0	0.8	0.8			
30			0.8	1.2	1.2		3.2			
35			0.8	2.4			3.3			
40										
45				5.2			5.2			
50				3.6			3.6	2.0		
55				2.8	0.8		3.6	0.8		
60		1.2		6.4			7.6			
65		1.2		2.8	0.8		4.8			
70		1.2	1.2	2.8			5.2			
75		0.8	0.8	7.3		1.2	10.1	0.8		
80		0.0	0.7	2.0	0.8	1.2	3.6	0.8		
85		1.2	0.7	1.2	0.0		3.1	0.0		
			0.7		0 0					
90		0.8		2.4	0.8		4.0	1 0		
95		1.2		2.0			3.2	1.2		
100		1.2		0.7			1.9			
105			1.2				1.2	1.2		
110		0.8		1.2			2.0			
115								1.2		
120										
125		1.2					1.2			
130		0.8					0.8			
135										
140										
145										
150		0.7					0.7			
175		0.7					0.7			
200										
225										
250										
275										
otal		12.4	6.3	44.2	4.5	2.0	69.4			
ead P		1.6	0.8	5.6				8.1		
ead U										
ive U										
			Aver	age Basal	Area (m2) at 5 L	evels			
2.5 +		12.4	6.3	44.2	4.5	2.0		8.1		
7.5 +		12.4	6.3	44.2	4.5	2.0	69.4	8.1		
2.5 +		12.4	6.3		4.5	2.0		8.1		
						1.2				
7.5 +		12.4	6.3	44.2	4.5		68.6	8.1		
2.5 +		12.4	5.5	43.0	3.3	1.2	65.4	8.1		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Block Basal Area Table (m2/ha)

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Block: (M) - 002:Block 2, Plots in Block: 16, TUs: [RW: 0.7]

,	,	OCK 2, PIC	OCD III DIO	JCIL. 10,	IUS. [F	. 0.7	1			
		F	С	Н	В	Y	Total	DP	DU	I
tilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15										
20										
25						1.0	1.0			
30			1.0	1.0	1.0		2.9			
35			1.0	3.0			4.0			
40										
45				4.9			4.9			
50				3.5			3.5	2.0		
55				3.0	1.0		4.0	1.0		
60		1.0		5.9			6.8			
65		1.0		3.0	1.0		4.9			
70		1.0	1.0	3.0	0		4.9			
75		1.0	1.0	7.9		1.0	10.9	1.0		
80		1.0	0.6	2.0	1.0	1.0	3.5	1.0		
85		1.0	0.6	1.0	1.0		2.5	1.0		
90		1.0	0.0	1.9	1.0		3.9			
95		1.0		2.0	1.0		2.9	1.0		
100		1.0		0.6			1.5	1.0		
105		1.0	1.0	0.0			1.0	1.0		
110		1.0	1.0	1.0			2.0	1.0		
115		1.0		1.0			2.0	1.0		
120								1.0		
125		1.0					1.0			
130		1.0					1.0			
		1.0					1.0			
135										
140										
145		0.6					0.6			
150 175		0.6					0.6			
200										
225										
250										
275		11 2	C 1	42 5	F 0	2 0	67.0			
otal_		11.3	6.1	43.5	5.0	2.0	67.8			
ead P		2.0	1.0	4.9				7.9		
ead U										
ive U			_		_ ,					
				rage Basal						
2.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
7.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
2.5 +		11.3	6.1	43.5	5.0	2.0	67.8	7.9		
7.5 +		11.3	6.1	43.5	5.0	1.0	66.8	7.9		
2.5 +		11.3	5.1	42.5	4.0	1.0	63.9	7.9		

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

BBASL- 3 , p43

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

TSTND- 1 , p44 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized Computerized Decay

PSYU: Nootka

FIZ: B

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Licence Number: COMM CP: PRE Project: AVCF

Average Line Method

Computerized Waste Computerized Breakage

Region: 2 - West Coast Cruised by: AZMETH Version: 2015.00 IFS build 5947 District: 04 - South Island

Type 1 (M):HF 951, Plots in Type: 9, TUs: [All Treatment Units: 6.4]

	F	С	Н	В	Y	Total	DP	DU	LU
Utilization Limits									
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20									
25									
30			29.4	34.3		63.7			
35									
40									
45			43.1			43.1			
50			18.8			18.8	11.1		
55			8.8			8.8			
60	7.6		32.7			40.3			
65	6.4		6.8			13.2			
70	5.6	6.3	6.0			17.9			
75			10.6		4.8	15.4			
80		2.8	4.7			7.5			
85	3.9	2.5	3.8			10.2			
90			7.2			7.2			
95	3.3		3.3			6.6	3.2		
100	2.8		1.7			4.4			
105		2.6				2.6	2.5		
110			2.3			2.3			
115							2.2		
120									
125	1.9					1.9			
130									
135									
140									
145									
150	0.7					0.7			
175									
200									
225									
250 275									
Total	32.1	14.2	179.3	34.3	4.8	264.7			
Dead P	34.1	14.2	19.3	34.3	4.0	204.7	19.0		
Dead U			19.0				19.0		
Live U									
TIAG 0		Δττα	rage DBH(c	m) at 5 T	.evele				
12.5 +	82.4	80.6	58.2	28.9	77.4	60.7	77.7		
17.5 +	82.4	80.6	58.2	28.9	77.4	60.7	77.7		
22.5 +	82.4	80.6	58.2	28.9	77.4	60.7	77.7		
27.5 +	82.4	80.6	58.2	28.9	77.4	60.7	77.7		
32.5 +	82.4	80.6	62.1	20.7	77.4	67.6	77.7		
	Q2.1	00.0	~			00			

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

TSTND- 2 , p45 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized

Computerized Waste

Computerized Breakage

FIZ: B Computerized Decay

PSYU: Nootka Region: 2 - West Coast

Cruised by: AZMETH District: 04 - South Island

Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Type 1 (M):HF 951, Plots in Type: 9, TUs: [Block: 6.1]

		F	С	Н	В	Y	Total	DP	DU	I
cilization										
	em (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht c		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
_	em (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
_	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
OBH										
lass										
5 10										
15										
20										
25										
30				29.4	34.3		63.7			
35				29.4	34.3		03.7			
40										
45				43.1			43.1			
50				18.8			18.8	11.1		
55				8.8			8.8			
60		7.6		32.7			40.3			
65		6.4		6.8			13.2			
70		5.6	6.3	6.0			17.9			
75				10.6		4.8	15.4			
80			2.8	4.7			7.5			
85		3.9	2.5	3.8			10.2			
90				7.2			7.2			
95		3.3		3.3			6.6	3.2		
100		2.8		1.7			4.4			
105			2.6				2.6	2.5		
110				2.3			2.3			
115								2.2		
120										
125		1.9					1.9			
130										
135										
140										
145		0. 17					0 5			
150		0.7					0.7			
175										
200 225										
250										
275										
tal		32.1	14.2	179.3	34.3	4.8	264.7			
ad P		32.1	14.2	19.0	34.3	4.0	204.7	19.0		
ad U				10.0				10.0		
ve U										
0			Ave	rage DBH(c	m) at 5 T	Levels				
2.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
7.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
2.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
7.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
2.5 +		82.4	80.6	62.1		77.4	67.6	77.7		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

TSTND- 3 , p46 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized

Computerized Waste

Computerized Breakage

Computerized Decay

Region: 2 - West Coast

FIZ: B

PSYU: Nootka

District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Type 1 (M):HF 951, Plots in Type: 9, TUs: [RW : 0.3]

Type I (M	, , , , ,	11005 111 1	ypc. J,	105. [KW	. 0.5]					
		F	С	Н	В	Y	Total	DP	DU	LU
Utilization	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25 30				29.4	34.3		63.7			
35				29.4	34.3		63.7			
40										
45				43.1			43.1			
50				18.8			18.8	11.1		
55				8.8			8.8			
60		7.6		32.7			40.3			
65		6.4		6.8			13.2			
70		5.6	6.3	6.0			17.9			
75				10.6		4.8	15.4			
80			2.8	4.7			7.5			
85		3.9	2.5	3.8			10.2			
90				7.2			7.2			
95		3.3		3.3			6.6	3.2		
100		2.8		1.7			4.4			
105			2.6				2.6	2.5		
110				2.3			2.3			
115								2.2		
120		1 0					1.0			
125		1.9					1.9			
130										
135 140										
145										
150		0.7					0.7			
175		0.7					0.,			
200										
225										
250										
275										
Total		32.1	14.2	179.3	34.3	4.8	264.7			
Dead P				19.0				19.0		
Dead U										
Live U										
				rage DBH(c						
12.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
17.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
22.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
27.5 +		82.4	80.6	58.2	28.9	77.4	60.7	77.7		
32.5 +		82.4	80.6	62.1		77.4	67.6	77.7		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

TSTND- 4 , p47 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized

Computerized Decay

PSYU: Nootka Region: 2 - West Coast

FIZ: B

Computerized Waste Computerized Breakage

Cruised by: AZMETH Version: 2015.00 IFS build 5947 District: 04 - South Island

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [All Treatment Units: 5.7]

1902 2 (M) · HFC J41,	11005 111	1750 7,	100. [1111	11 Cacilles	ic oniteb	. 3.,			
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizati	on Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class 5										
10										
15										
20										
25						37.1	37.1			
30			23.5				23.5			
35			19.7	55.6			75.3			
40										
45				22.6			22.6	0 4		
50				17.9	7 0		17.9	8.4		
55 60				15.2 12.5	7.2		22.4 12.5	7.1		
65				9.9	5.2		15.1			
70				8.6	3.2		8.6			
75		3.9	4.1	23.8			31.8	3.9		
80				3.6	3.7		7.3	3.4		
85										
90		2.6			2.7		5.4			
95				2.4			2.4			
100										
105 110		1.8					1.8			
115		1.8					1.8			
120										
125										
130		1.3					1.3			
135										
140										
145										
150										
175										
200 225										
250										
275										
Total		9.6	47.3	172.2	18.8	37.1	285.1			
Dead P		7.3	7.1	8.4				22.8		
Dead U										
Live U										
				rage DBH(c						
12.5 +		96.2	37.6	54.5	68.9	24.5	52.3	62.5		
17.5 + 22.5 +		96.2 96.2	37.6 37.6	54.5 54.5	68.9 68.9	24.5 24.5	52.3 52.3	62.5 62.5		
27.5 +		96.2	37.6	54.5	68.9	24.5	52.3	62.5		
32.5 +		96.2	43.2	54.5	68.9		57.2	62.5		
52.5		JU.2	10.2	51.5	00.7		57.2	02.5		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

TSTND- 5 , p48 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Computerized Breakage

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka Computerized Waste

Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [Block: 5.3]

Title Titl	Type Z (F	1)·IIIC 541,	FIOCS III	Type. /,	105. [BI	.ock · 5	, 1				
Min DBH cm (M) 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5			F	С	Н	В	Y	Total	DP	DU	LU
Stump Ht cm (M) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.	Utilizatio	on Limits									
Top Dia cm (M) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0											
Log Len											
Class 10											
Class 5		m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
5 10 15 20 20 25 3.5 37.1 37.1 37.1 32.5 35 40 23.5 35 40 40 45 40											
10 15 20 21 30 25 30 23.5 35 35 19.7 55.6 40 41 45 22.6 50 17.9 17.9 17.9 8.4 7.1 60 12.5 65 9.9 5.2 15.1 70 8.6 8.6 75 3.9 4.1 23.8 3.6 3.7 7.3 3.4 85 90 2.6 2.7 95 2.4 100 105 110 1.8 1.8 1.8 115 120 125 125 130 1.3 1.3 1.3 1.3 1.3 1.5 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 28.8 22.8 Pead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 27.6 45.6 86.9 24.5 52.3 62.5 52.3 62.5 52.5 52.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5 52.3 62.5											
15 20 25 30 37.1 37.1 37.1 33.5 35 35 38 19.7 55.6 75.3 40 40 45 45 22.6 22.6 50 17.9 17.9 17.9 8.4 55 15.2 7.2 22.4 7.1 60 12.5 12.5 65 9.9 5.2 15.1 70 8.6 8.6 8.6 75 3.9 4.1 23.8 31.8 3.9 80 3.6 3.7 7.3 3.4 85 89 90 2.6 2.7 5.4 95 90 2.6 2.7 5.4 95 110 1.8 1.8 115 120 125 130 110 1.8 1.8 115 120 125 130 1.3 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Pead by 7.3 7.1 8.4 Pead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5											
20 25 30 23.5 35 35 36 37.1 37.1 23.5 38 37.1 23.5 38 37.1 23.5 38 38 40 45 22.6 50 22.6 50 22.6 50 17.9 17.9 17.9 8.4 7.1 60 12.5 12.5 65 9.9 9.9 5.2 15.1 70 8.6 8.6 75 3.9 4.1 23.8 31.8 3.9 80 3.6 3.7 7.3 3.4 85 90 2.6 2.7 5.4 100 105 110 1.8 1.8 1.8 115 120 125 130 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 20.8 228 228 229 250 275 Total 9.6 47.3 17.2 2 18.8 37.1 285.1 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22											
30											
35	25						37.1	37.1			
40 45 50 17.9 17.9 17.9 8.4 55 15.2 7.2 22.4 7.1 60 12.5 65 9.9 9.9 5.2 15.1 70 8.6 8.6 8.6 75 3.9 4.1 23.8 31.8 3.9 80 3.6 3.7 7.3 3.4 85 90 2.6 2.7 5.4 95 95 2.4 100 105 110 1.8 1.8 115 120 125 130 1.3 3.5 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 28.8 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 52.5 52.5 52.5 52.5 52.5 62.5 52.5 5	30			23.5				23.5			
45 50 17.9 17.9 17.9 17.9 18.4 55 15.2 7.2 22.4 7.1 60 12.5 65 9.9 9.9 5.2 15.1 70 8.6 8.6 8.6 75 3.9 4.1 23.8 8.6 3.6 3.7 7.3 3.4 85 90 2.6 2.7 5.4 95 95 100 100 105 110 1.8 1.8 115 120 125 130 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 200 225 250 275 Total 9.6 47.3 7.1 8.4 22.8 Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5 52.5 52.3 62.5				19.7	55.6			75.3			
17.9											
55											
60											
65 70 8.6 8.6 8.6 8.6 8.6 75 3.9 4.1 23.8 31.8 3.9 80 80 80 80 80 80 80 80 80 80 80 80 80						7.2			7.1		
70 75 75 3.9 4.1 23.8 3.6 3.6 7.3 3.4 85 90 2.6 2.7 5.4 95 2.4 2.4 100 105 110 1.8 1.8 115 120 125 130 1.3 135 140 145 150 175 200 225 225 250 275 Total 9.6 47.3 7.1 8.4 22.8 Dead P 7.3 7.1 8.4 22.8 Dead P Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5						E 2					
75 3.9 4.1 23.8 31.8 3.9 80 3.6 3.7 7.3 3.4 85 90 2.6 2.7 5.4 95 2.4 2.4 100 105 1.8 1.8 115 120 125 130 1.3 1.3 135 140 145 150 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5						5.4					
80			3 9	4 1					3 9		
85 90 2.6 2.7 5.4 95 100 105 110 1.8 1.8 115 120 125 130 1.3 1.3 135 140 145 150 275 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5			3.9	4.1		3 7					
90 2.6 2.7 5.4 95 2.4 2.4 100 105 110 1.8 1.8 115 120 125 130 1.3 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5					3.0	3.,		7.3	3.1		
100 105 110 110 1.8 115 120 125 130 1.3 135 140 145 150 175 200 225 250 275 Total Pead P 7.3 7.1 8.4 22.8 Pead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5			2.6			2.7		5.4			
105 110	95				2.4			2.4			
110	100										
115 120 125 130 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5											
120 125 130 1.3 135 140 1445 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5			1.8					1.8			
125 130 130 1.3 135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5											
130											
135 140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 55.3 62.5			1 2					1 2			
140 145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5			1.3					1.3			
145 150 175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5											
150 175 200 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5											
175 200 225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
225 250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
250 275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5	200										
275 Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 25.3 62.5											
Total 9.6 47.3 172.2 18.8 37.1 285.1 Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
Dead P 7.3 7.1 8.4 22.8 Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 25.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5					1500						
Dead U Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5						18.8	37.1	285.1	00.0		
Live U Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5			7.3	7.1	8.4				22.8		
Average DBH(cm) at 5 Levels 12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
12.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5	HIVE O			Ave-	rage DBH(c	m) at 5 ī	evels				
17.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5	12.5 +		96.2					52.3	62.5		
22.5 + 96.2 37.6 54.5 68.9 24.5 52.3 62.5 27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
27.5 + 96.2 37.6 54.5 68.9 55.3 62.5											
				37.6				55.3			
	32.5 +		96.2	43.2	54.5	68.9			62.5		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

TSTND- 6 , p49 Type Stand Table (stems/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized

Computerized Breakage

Computerized Waste

FIZ: B Computerized Decay

PSYU: Nootka Region: 2 - West Coast

District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [RW : 0.4]

		F	С	Н	В	Y	Total	DP	DU	I
tilization I										
	n (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht cn		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30
-	n (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15
log Len n	n	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
ass										
5										
10										
15										
20										
25						37.1	37.1			
30			23.5				23.5			
35			19.7	55.6			75.3			
40										
45				22.6			22.6			
50				17.9			17.9	8.4		
55				15.2	7.2		22.4	7.1		
60				12.5			12.5			
65				9.9	5.2		15.1			
70				8.6			8.6			
75		3.9	4.1	23.8			31.8	3.9		
80		3.5		3.6	3.7		7.3	3.4		
85				3.0	3.7		, . 3	3.1		
90		2.6			2.7		5.4			
95		2.0		2.4	2.,		2.4			
100				2.1			2.1			
105										
110		1.8					1.8			
115		1.0					1.0			
120										
125										
130		1.3					1.3			
		1.3					1.3			
135										
140										
145										
150										
175										
200										
225										
250										
275										
tal		9.6	47.3	172.2	18.8	37.1	285.1			
ad P		7.3	7.1	8.4				22.8		
ad U										
ve U						_				
				rage DBH(c						
2.5 +		96.2	37.6	54.5	68.9	24.5	52.3	62.5		
7.5 +		96.2	37.6	54.5	68.9	24.5	52.3	62.5		
2.5 +		96.2	37.6	54.5	68.9	24.5	52.3	62.5		
7.5 +		96.2	37.6	54.5	68.9		55.3	62.5		
1.5 +		96.2	43.2	54.5	68.9		57.2	62.5		

Licence Number: COMM CP: PRE

TSTCK- 1 , p50

Type Stock Table (m3/ha) Grades: MOF Computerized

Computerized Breakage

FIZ: B

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp

Average Line Method AVCF

Project: AVCF

Computerized Decay Computerized Waste

PSYU: Nootka Compiled by: F Warren and Associates Ltd Region: 2 - West Coast Cruised by: AZMETH District: 04 - South Island

Version: 2015.00 IFS build 5947

Type 1 (M):HF 951, Plots in Type: 9, TUs: [All Treatment Units: 6.4]

.710 1 (1.	., , , , ,	11000 111 1	750)	100 [1111	11000	011100	0.1			
		F	C	Н	В	Y	Total	DP	DU	L
	on Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
DBH										
lass										
5										
10										
15										
20										
25										
30				19.3	19.4		38.7			
35										
40										
45				55.7			55.7			
50				44.2			44.2	20.8		
55				29.3			29.3			
60		20.9		109.3			130.2			
65		23.1		35.7			58.8			
70		23.3	18.0	29.0			70.3			
75				64.0		16.5	80.4			
80			11.3	19.3			30.5			
85		30.5	11.6	31.5			73.5			
90				64.9			64.9			
95		28.1		33.4			61.5	24.4		
100		30.8		19.2			49.9			
105			19.0				19.0	25.7		
110				40.2			40.2			
115								28.7		
120										
125		27.7					27.7			
130										
135										
140										
145										
150		18.4					18.4			
175										
200										
225										
250										
275				= 0.4 0						
otal		202.8	59.8		19.4	16.5	893.3			
ead P			m - t-	99.7				99.7		
7 -		202 2		al Volumes			002.2	00 5		
7.5 +		202.8	59.8	594.8	19.4			99.7		
2.5 +		202.8	59.8	594.8	19.4		893.3	99.7		
7.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
		202.8	59.8	575.5		16.5	854.6	99.7		
						16 -	0546	00 5		
7.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
2.5 + 7.5 + 2.5 +				575.5 575.5 519.8		16.5 16.5 16.5	854.6 854.6 798.9	99.7 99.7 99.7		

Licence Number: COMM CP: PRE

Project: AVCF

TSTCK- 2 , p51

Type Stock Table (m3/ha)

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Grades: MOF Computerized Average Line Method AVCF

Computerized Decay Computerized Waste Computerized Breakage

Type 1 (M):HF 951, Plots in Type: 9, TUs: [Block: 6.1]

		F	C	Н	В	Y	Total	DP	DU	I
cilization										
	m (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht c		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
	m (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
ass										
5										
10										
15										
20										
25										
30				19.3	19.4		38.7			
35										
40										
45				55.7			55.7			
50				44.2			44.2	20.8		
55				29.3			29.3			
60		20.9		109.3			130.2			
65		23.1		35.7			58.8			
70		23.3	18.0	29.0			70.3			
75				64.0		16.5	80.4			
80			11.3	19.3			30.5			
85		30.5	11.6	31.5			73.5			
90				64.9			64.9			
95		28.1		33.4			61.5	24.4		
100		30.8		19.2			49.9			
105			19.0				19.0	25.7		
110				40.2			40.2			
115								28.7		
120										
125		27.7					27.7			
130										
135										
140										
145										
150		18.4					18.4			
175										
200										
225										
250										
275										
tal		202.8	59.8	594.8	19.4	16.5	893.3			
ad P				99.7				99.7		
			Tot	al Volumes	s for 7 L	evels				
.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
'.5 +		202.8	59.8	519.8		16.5	798.9	99.7		

Licence Number: COMM CP: PRE

AVCF

TSTCK- 3 , p52

Type Stock Table (m3/ha) Grades: MOF Computerized Average Line Method

Computerized Decay

FIZ: B PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Project: AVCF Computerized Breakage

Type 1 (M):HF 951,	Plots in Ty	pe: 9, 7	TUs: [RW	: 0.3]					
		F	С	Н	В	Y	Total	DP	DU	LU
Utilization	n Limits	-	- J		2	_	10001	22	20	20
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25										
30				19.3	19.4		38.7			
35										
40										
45				55.7			55.7			
50				44.2			44.2	20.8		
55		20.0		29.3			29.3			
60 65		20.9 23.1		109.3 35.7			130.2			
70		23.3	18.0	29.0			58.8 70.3			
75		23.3	10.0	64.0		16.5	80.4			
80			11.3	19.3		10.5	30.5			
85		30.5	11.6	31.5			73.5			
90		30.3		64.9			64.9			
95		28.1		33.4			61.5	24.4		
100		30.8		19.2			49.9			
105			19.0				19.0	25.7		
110				40.2			40.2			
115								28.7		
120										
125		27.7					27.7			
130										
135										
140										
145		10 4					18.4			
150 175		18.4					18.4			
200										
225										
250										
275										
Total		202.8	59.8	594.8	19.4	16.5	893.3			
Dead P				99.7				99.7		
			Tota	al Volumes	for 7 Le	evels				
17.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
22.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
27.5 +		202.8	59.8	594.8	19.4	16.5	893.3	99.7		
32.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
37.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
42.5 +		202.8	59.8	575.5		16.5	854.6	99.7		
47.5 +		202.8	59.8	519.8		16.5	798.9	99.7		

Computerized Waste

Licence Number: COMM CP: PRE

TSTCK- 4 , p53

Grades: MOF Computerized Average Line Method

FIZ: B

Type Stock Table (m3/ha)

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp

AVCF

Project: AVCF

Computerized Decay Computerized Waste Computerized Breakage

PSYU: Nootka Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [All Treatment Units: 5.7]

	F	С	H	В	Y	Totol	DP	DU	T TT
Utilization Limit		C	п	ь	ī	Total	DP	טע	LU
Min DBH cm (M)		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)		15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20									
25					8.5	8.5			
30		9.6	41 5			9.6			
35		9.7	41.7			51.4			
40 45			33.7			33.7			
50			36.3			36.3	10.2		
55			41.9	24.9		66.8	7.1		
60			34.3	21.9		34.3	, . _		
65			43.3	22.5		65.8			
70			40.8			40.8			
75	17.5	6.5	135.3			159.3	8.4		
80			19.1	19.1		38.1	9.2		
85									
90	21.4			28.0		49.5			
95			23.9			23.9			
100									
105	10.0					10.0			
110 115	18.9					18.9			
120									
125									
130	20.7					20.7			
135	20.7					20.7			
140									
145									
150									
175									
200									
225									
250									
275 Total	78.6	25.9	450.3	94.5	8.5	657 0			
Dead P	17.6	∠5.9 7.1	450.3 10.2	94.5	8.5	657.8	34.9		
Dead P	17.0		al Volumes	for 7 Le	avele		34.9		
17.5 +	78.6	25.9	450.3	94.5	8.5	657.8	34.9		
22.5 +	78.6	25.9	450.3	94.5	8.5	657.8	34.9		
27.5 +	78.6	25.9	450.3	94.5	0.5	649.3	34.9		
32.5 +	78.6	16.2	450.3	94.5		639.6	34.9		
37.5 +	78.6	6.5	408.7	94.5		588.2	34.9		
42.5 +	78.6	6.5	408.7	94.5		588.2	34.9		
47.5 +	78.6	6.5	374.9	94.5		554.5	34.9		

Licence Number: COMM CP: PRE

AVCF

Project: AVCF

TSTCK- 5 , p54

Average Line Method

Grades: MOF Computerized

FIZ: B PSYU: Nootka

District: 04 - South Island

Type Stock Table (m3/ha)

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Region: 2 - West Coast Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Computerized Decay Computerized Waste Computerized Breakage

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [Block: 5.3]

		F	С	Н	В	Y	Total	DP	DU	T 11
Utilizatio	n Limits	г	C	п	Б	ī	Total	DP	טע	LU
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht	cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH										
Class										
5										
10										
15										
20										
25						8.5	8.5			
30			9.6				9.6			
35			9.7	41.7			51.4			
40										
45				33.7			33.7	10.0		
50 55				36.3 41.9	24.9		36.3 66.8	10.2 7.1		
60				34.3	24.9		34.3	/.1		
65				43.3	22.5		65.8			
70				40.8	22.5		40.8			
75		17.5	6.5	135.3			159.3	8.4		
80		17.5	0.5	19.1	19.1		38.1	9.2		
85				17.1	17.1		30.1	J. 2		
90		21.4			28.0		49.5			
95				23.9			23.9			
100										
105										
110		18.9					18.9			
115										
120										
125										
130		20.7					20.7			
135										
140 145										
145										
175										
200										
225										
250										
275										
Total		78.6	25.9	450.3	94.5	8.5	657.8			
Dead P		17.6	7.1	10.2				34.9		
				al Volumes		evels				
17.5 +		78.6	25.9	450.3	94.5	8.5	657.8	34.9		
22.5 +		78.6	25.9	450.3	94.5	8.5	657.8	34.9		
27.5 +		78.6	25.9	450.3	94.5		649.3	34.9		
32.5 +		78.6	16.2	450.3	94.5		639.6	34.9		
37.5 +		78.6	6.5	408.7	94.5		588.2	34.9		
42.5 +		78.6	6.5	408.7	94.5		588.2	34.9		
47.5 +		78.6	6.5	374.9	94.5		554.5	34.9		

Licence Number: COMM CP: PRE

Average Line Method

AVCF

TSTCK- 6 , p55

Type Stock Table (m3/ha) Grades: MOF Computerized

FIZ: B

PSYU: Nootka

Region: 2 - West Coast

District: 04 - South Island

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Project: AVCF Computerized Breakage

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [RW : 0.4]

	F	С	Н	В	Y	Total	DP	DU	LU
Utilization Limits	1								
Min DBH cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (M)	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20									
25					8.5	8.5			
30		9.6			0.5	9.6			
35		9.7	41.7			51.4			
40		J. 1	11.7			31.1			
45			33.7			33.7			
50			36.3			36.3	10.2		
55			41.9	24.9		66.8	7.1		
60			34.3	24.9		34.3	/ . 1		
65			43.3	22.5		65.8			
70				22.5					
	17 5	c =	40.8			40.8	0 4		
75	17.5	6.5	135.3	10 1		159.3	8.4		
80			19.1	19.1		38.1	9.2		
85	0.1					40 =			
90	21.4			28.0		49.5			
95			23.9			23.9			
100									
105									
110	18.9					18.9			
115									
120									
125									
130	20.7					20.7			
135									
140									
145									
150									
175									
200									
225									
250									
275									
Total	78.6	25.9	450.3	94.5	8.5	657.8			
Dead P	17.6	7.1	10.2				34.9		
		Tot	al Volumes	for 7 Le	evels				
17.5 +	78.6	25.9	450.3	94.5	8.5	657.8	34.9		
22.5 +	78.6	25.9	450.3	94.5	8.5	657.8	34.9		
27.5 +	78.6	25.9	450.3	94.5		649.3	34.9		
32.5 +	78.6	16.2	450.3	94.5		639.6	34.9		
37.5 +	78.6	6.5	408.7	94.5		588.2	34.9		
42.5 +	78.6	6.5	408.7	94.5		588.2	34.9		
47.5 +	78.6	6.5	374.9	94.5		554.5	34.9		

Computerized Decay

Computerized Waste

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Type Basal Area Table (m2/ha)

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Type 1 (M):HF 951, Plots in Type: 9, TUs: [All Treatment Units: 6.4]

-21 (,	,		21, -							
		F	C	Н	В	Y	Total	DP	DU	LU
Jtilization L										
	n (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm Top Dia cm	n (M) n (M)	30.0 15.0								
Log Len m		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH "	Ц	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15										
20										
25				0 0	0 0		4 5			
30				2.3	2.3		4.5			
35 40										
45				6.8			6.8			
50				3.6			3.6	2.3		
55				2.3			2.3			
60		2.3		9.0			11.3			
65		2.3		2.3			4.5			
70		2.3	2.2	2.3			6.8			
75				4.5		2.2	6.7			
80 85		2.2	1.4	2.2			3.6 5.9			
90		2.2	1.4	2.3 4.5			4.5			
95		2.3		2.2			4.5	2.2		
100		2.3		1.4			3.6			
105			2.3				2.3	2.3		
110				2.3			2.3			
115								2.3		
120										
125		2.2					2.2			
130 135										
140										
145										
150		1.4					1.4			
175										
200										
225										
250										
275 Total		17.1	7.2	47.7	2.3	2.2	76.6			
Dead P		1/.1	1.2	9.0	2.3	2.2	70.0	9.0		
Dead U				9.0				9.0		
Live U										
			Aver	age Basal	Area (m2	2) at 5 L	evels			
12.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
17.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
22.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
27.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
32.5 +		17.1	7.2	45.5		2.2	72.1	9.0		

FLAGS: Full Volumes, Normal Cruise, All Trees Compiled, Measure Plots Only, Damage, CruiseComp Copyright© 1996-2015, Industrial Forestry Service Ltd.

TBASL- 1 , p56

28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Licence Number: COMM CP: PRE

Type 1 (M):HF 951, Plots in Type: 9, TUs: [Block: 6.1]

Average Line Method

AVCF

TBASL- 2 , p57 Type Basal Area Table (m2/ha) 28-Sep-2015 07:52:52PM

Grades: MOF Computerized FIZ: B

Computerized Decay

Computerized Waste Region: 2 - West Coast District: 04 - South Island

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

Project: AVCF Computerized Breakage

PSYU: Nootka

Type I (I	1) • 111. 551,	FIOCS III I	ype. J, I	ios. [bic	CK . 0.1	J				
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	n Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15										
20										
25										
30				2.3	2.3		4.5			
35										
40 45				6.8			6.8			
50				3.6			3.6	2.3		
55				2.3			2.3	2.3		
60		2.3		9.0			11.3			
65		2.3		2.3			4.5			
70		2.3	2.2	2.3			6.8			
75				4.5		2.2	6.8			
80			1.4	2.3			3.6			
85		2.2	1.4	2.3			5.9			
90 95		2.3		4.5 2.3			4.5 4.5	2.3		
100		2.3		1.4			3.6	2.3		
105		2.0	2.3				2.3	2.3		
110				2.3			2.3			
115								2.3		
120										
125		2.3					2.3			
130										
135 140										
145										
150		1.4					1.4			
175										
200										
225										
250										
275		17 1	7 0	47 7	2 2	2 2	76.6			
Total Dead P		17.1	7.2	47.7 9.0	2.3	2.2	76.6	9.0		
Dead U				9.0				9.0		
Live U										
			Aver	age Basal	Area (m2	2) at 5 L	evels			
12.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
17.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
22.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
27.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
32.5 +		17.1	7.2	45.5		2.2	72.1	9.0		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

TBASL- 3 , p58 Type Basal Area Table (m2/ha) 28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp

Version: 2015.00 IFS build 5947

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Type 1 (M):HF 951, Plots in Type: 9, TUs: [RW : 0.3]

1750 1 (1	1, 111 331,	FIOUS III I	100. 21	LOD : LIW	. 0.5					
		F	С	Н	В	Y	Total	DP	DU	LU
Utilizatio	on Limits									
Min DBH	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len DBH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Class										
5										
10										
15										
20										
25										
30				2.3	2.3		4.5			
35										
40				<i>c</i> 0			6.8			
45 50				6.8 3.6			3.6	2.3		
55				2.3			2.3	2.3		
60		2.3		9.0			11.3			
65		2.3		2.3			4.5			
70		2.3	2.3	2.3			6.8			
75				4.5		2.2	6.8			
80			1.4	2.3			3.6			
85		2.2	1.4	2.3			5.9			
90		2		4.5			4.5	2.2		
95 100		2.3		2.3 1.4			4.5 3.6	2.3		
105		2.3	2.3	1.1			2.3	2.3		
110			2.3	2.3			2.3	2.3		
115								2.3		
120										
125		2.3					2.3			
130										
135										
140 145										
150		1.4					1.4			
175		1.1					1.1			
200										
225										
250										
275										
Total		17.1	7.2	47.7	2.3	2.2	76.6	0 0		
Dead P				9.0				9.0		
Dead U Live U										
TT AC 0			Ανει	rage Basal	Area (m2	2) at 5 T	evels			
12.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
17.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
22.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
27.5 +		17.1	7.2	47.7	2.3	2.2	76.6	9.0		
32.5 +		17.1	7.2	45.5		2.2	72.1	9.0		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Type Basal Area Table (m2/ha)

FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Cruised by: AZMETH Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

28-Sep-2015 07:52:52PM

TBASL- 4 , p59

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [All Treatment Units: 5.7]

,	, 1110 711,	PIOUS IN	1700 ,,	100 - [1111	i i cacilici	ic onred	. 3., 1			
		F	C	Н	В	Y	Total	DP	DU	I
tilizatio Min DBH	n Limits cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
Stump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
Top Dia	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
Log Len	m (11)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10
DBH										
lass										
5										
10										
15 20										
25						1.8	1.8			
30			1.8			1.0	1.8			
35			1.8	5.3			7.0			
40										
45				3.5			3.5			
50				3.5			3.5	1.7		
55				3.5	1.8		5.3	1.8		
60				3.5			3.5			
65				3.5	1.7		5.3			
70		1 0	1 17	3.5			3.5	1 0		
75 80		1.8	1.7	10.5 1.7	1.8		14.0 3.5	1.8		
85				1./	1.8		3.5	1.8		
90		1.8			1.7		3.5			
95				1.8	_ , ,		1.8			
100										
105										
110		1.8					1.8			
115										
120										
125		1 0					1 0			
130 135		1.8					1.8			
140										
145										
150										
175										
200										
225										
250										
275		7.0	F 2	10.2	7.0	1 0	C1 2			
otal ead P		7.0 3.5	5.3 1.8	40.3 1.7	7.0	1.8	61.3	7.0		
ad U		3.3	1.0	1./				7.0		
ive U										
			Aver	age Basal	Area (m2) at 5 L	evels			
2.5 +		7.0	5.3	40.3	7.0	1.8	61.3	7.0		
7.5 +		7.0	5.3	40.3	7.0	1.8	61.3	7.0		
2.5 +		7.0	5.3	40.3	7.0	1.8	61.3	7.0		
7.5 +		7.0	5.3	40.3	7.0		59.5	7.0		
2.5 +		7.0	3.5	40.3	7.0		57.8	7.0		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

TBASL- 5 , p60 Type Basal Area Table (m2/ha) 28-Sep-2015 07:52:52PM

Filename: comm_for_blk2_LF_typed.ccp

Version: 2015.00 IFS build 5947

Cruised by: AZMETH

Compiled by: F Warren and Associates Ltd

Grades: MOF Computerized

FIZ: B Computerized Decay PSYU: Nootka

Computerized Waste Region: 2 - West Coast District: 04 - South Island Computerized Breakage

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [Block: 5.3]

	F	C	Н	В	Y	Total	DP	DU	LU
Utilization Limi									
Min DBH cm (N	1) 17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
Stump Ht cm (N		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0
Top Dia cm (N		15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Log Len m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DBH									
Class									
5									
10									
15									
20									
25					1.8	1.8			
30		1.8				1.8			
35		1.8	5.3			7.0			
40			2 5			2 5			
45			3.5			3.5	1 0		
50			3.5	1 0		3.5	1.8		
55			3.5	1.8		5.3	1.8		
60			3.5	1 7		3.5			
65			3.5	1.7		5.3			
70	1 0	1 7	3.5			3.5	1 0		
75	1.8	1.7	10.5	1 0		14.0	1.8		
80 85			1.7	1.8		3.5	1.8		
90	1.8			1.8		3.5			
95	1.0		1.8	1.0		1.8			
100			1.0			1.0			
105									
110	1.8					1.8			
115	1.0					1.0			
120									
125									
130	1.8					1.8			
135									
140									
145									
150									
175									
200									
225									
250									
275									
Total	7.0	5.3	40.3	7.0	1.8	61.3			
Dead P	3.5	1.8	1.8				7.0		
Dead U									
Live U									
			age Basal						
12.5 +	7.0	5.3	40.3	7.0	1.8	61.3	7.0		
17.5 +	7.0	5.3	40.3	7.0	1.8	61.3	7.0		
22.5 +	7.0	5.3	40.3	7.0	1.8	61.3	7.0		
27.5 +	7.0	5.3	40.3	7.0		59.5	7.0		
32.5 +	7.0	3.5	40.3	7.0		57.8	7.0		

Licence Number: COMM CP: PRE

Average Line Method

Project: AVCF

AVCF

Type Basal Area Table (m2/ha)

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp FIZ: B

Grades: MOF Computerized Computerized Decay PSYU: Nootka

Region: 2 - West Coast

Cruised by: AZMETH District: 04 - South Island Version: 2015.00 IFS build 5947

TBASL- 6 , p61

Compiled by: F Warren and Associates Ltd

Type 2 (M):HFC 941, Plots in Type: 7, TUs: [RW : 0.4]

		F	С	Н	В	Y	Total	DP	DU	L
ilization		15.5	15.5	15.5	15.5	18.5	15.5	15.5	15.5	1.5
	cm (M)	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.
tump Ht		30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.0	30.
	cm (M)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.
og Len BH	m	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.
ass										
5										
10										
15										
20										
25						1.7	1.7			
30			1.8			1.7	1.8			
35			1.8	5.3			7.0			
40			1.0	3.3			,			
45				3.5			3.5			
50				3.5			3.5	1.8		
55				3.5	1.8		5.3	1.8		
60				3.5			3.5			
65				3.5	1.8		5.3			
70				3.5			3.5			
75		1.8	1.7	10.5			14.0	1.8		
80				1.8	1.8		3.5	1.8		
85										
90		1.8			1.7		3.5			
95				1.8			1.8			
100										
105										
110		1.8					1.8			
115										
120										
125										
130		1.8					1.8			
135										
140										
145 150										
175										
200										
225										
250										
275										
tal		7.0	5.3	40.3	7.0	1.7	61.3			
ad P		3.5	1.8	1.8	,	- • •	01.5	7.0		
ad U										
ve U										
			Aver	age Basal	Area (m2	2) at 5 L	evels			
.5 +		7.0	5.3	40.3	7.0	1.7	61.3	7.0		
.5 +		7.0	5.3	40.3	7.0	1.7	61.3	7.0		
.5 +		7.0	5.3	40.3	7.0	1.7	61.3	7.0		
.5 +		7.0	5.3	40.3	7.0		59.5	7.0		
.5 +		7.0	3.5	40.3	7.0		57.8	7.0		

Computerized Waste

Computerized Breakage

Licence Number: COMM CP: PRE

Average Line Method

Standard Log Length:(m)

Project: AVCF

AVCF

PLSUM- 1 , p62 Plot Summary

Grades: MOF Computerized

Computerized Decay

Computerized Breakage

Computerized Waste

Region: 2 - West Coast District: 04 - South Island

FIZ: B

PSYU: Nootka

28-Sep-2015 07:52:52PM Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Utilization Levels:	Minimum DBH	Top Diameter	Stump Height
Mature Blocks: (cm) Immature Blocks:(cm)	17.5	15.0	30
	12.0	10.0	30

10.00

Forest Type	Block Strip	Plot # Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss Re	
1-HF 951	002	1 20.250F	55	Doug-Fir Hemlock All Sp.	1 3 4	17.07 179.17 196.24	122.90 65.71 72.50	266.79 840.07 1106.86	263.06 828.93 1091.99	249.72 778.53 1028.25	249.72 778.53 1028.25	1509		110 396
		2 20.250F	120	Hemlock Y. Cedar All Sp.	3 1 4	379.12 43.04 422.16	45.17 77.40 49.43	773.05 231.94 1004.99	766.79 179.99 946.78	720.41 163.75 884.16	720.41 148.21 868.62	1509		396 610
		3 20.250F	33	Doug-Fir Hemlock All Sp.	3 3 6	176.14 263.74 439.87	66.27 54.16 59.30	661.61 884.54 1546.15	644.46 810.50 1454.96	611.38 757.43 1368.80	605.68 727.18 1332.86	1509		110 396
		4 20.250F	60	Balsam W.R. Cedar Hemlock All Sp.	1 1 2 4	308.70 56.59 123.86 489.15	28.90 67.50 64.52 45.92	188.55 245.32 572.21 1006.08	185.35 199.94 564.40 949.68	175.92 182.76 530.07 888.75	174.79 161.91 530.07 866.77	1509		411 211 396
		5 20.250F	60	W.R. Cedar Doug-Fir Hemlock All Sp.	1 2 3 6	23.25 64.50 388.24 475.99	105.30 89.41 44.64 57.01	258.61 563.69 542.74 1365.04	212.58 556.34 533.93 1302.84	194.47 528.15 501.37 1223.99	170.68 527.59 501.37 1199.64	1509		211 110 396
		6 20.250F	80	Hemlock All Sp.	5 5	235.96 235.96	73.92 73.92		1428.93 1428.93		1341.89 1341.89	1509		396
		12 20.250F	80	Doug-Fir Hemlock G-Shatt All Sp.	1 3 1 4	24.93 100.25 29.18 125.18	101.70 87.84 94.00 90.77	306.18 1021.24 345.13 1327.42	295.15 853.89 266.78 1149.05	279.85 792.62 246.07 1072.46	276.78 739.54 219.85 1016.32	1509		110 396 396
		13 20.250F	75	Hemlock All Sp.	2 2	39.98 39.98	113.57 113.57	808.99 808.99	697.71 697.71	649.17 649.17	619.62 619.62	1509		396
		14 12.250F	82	W.R. Cedar Doug-Fir Hemlock All Sp.	2 1 2 5	47.61 6.09 74.55 128.25	80.94 160.00 64.69 77.98	313.31 177.13 312.65 803.09	255.51 174.47 310.28 740.26	233.58 165.61 291.52 690.71	205.53 165.61 291.52 662.66	1509		211 110 396
2-HFC 941	002	7 12.250F	140	Balsam Hemlock All Sp.	1 2 3	18.96 79.42 98.38	90.70 62.67 68.96	223.31 355.38 578.69	210.13 353.25 563.38	198.97 331.92 530.89	196.06 331.92 527.99	1509		411 396
		8 12.250F	57	Hemlock All Sp.	3	297.49 297.49	39.66 39.66	305.07 305.07	301.30 301.30	282.99 282.99	282.99 282.99	1509		396

Licence Number: COMM CP: PRE

Project: AVCF

Immature Blocks:(cm)

PLSUM- 2 , p63

Grades: MOF Computerized Average Line Method

Computerized Decay Computerized Waste

10.0

Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

Cruised by: AZMETH

28-Sep-2015 07:52:52PM

Version: 2015.00 IFS build 5947

Utilization Levels: Minimum DBH Top Diameter Stump Height Mature Blocks: (cm) 17.5 15.0

12.0

Standard Log Length:(m) 10.00

Forest Type	Block Strip	Plot # Size	Slope %	Species	# of Stems	Stems / Ha	Avg Diam	Gross Merch	Less Decay	Less DB	Less DWB	Cruise Date	Loss Ref No YI OI 1	
2-HFC 941	002	9 12.250F	40	W.R. Cedar Doug-Fir Hemlock Y. Cedar All Sp.	1 1 6 1 9	28.64 9.14 304.83 259.84 602.46	73.80 130.60 55.41 24.50 48.27	94.07 159.44 839.69 64.68 1157.88	62.37 154.02 834.26 64.16 1114.80	55.78 146.05 783.87 59.63 1045.34	45.72 144.93 783.87 59.63 1034.16	1509	21 11 39 61	.0 96
		10 12.250F	79	Balsam W.R. Cedar All Sp.	1 2 3	36.35 302.57 338.93	65.50 32.11 37.16	174.26 173.88 348.15	167.64 152.26 319.90	158.93 140.09 299.02	157.53 135.45 292.99	1509	41 21	
		11 12.250F	45	Balsam Doug-Fir Hemlock All Sp.	2 2 8 12	76.02 39.73 276.02 391.78	64.06 88.61 67.24 69.12	375.15 281.47 1302.51 1959.14	340.68 271.88 1289.68 1902.24	320.08 257.81 1211.53 1789.42	307.70 254.86 1211.53 1774.09	1509	41 11 39	_0
		15 12.250F	110	W.R. Cedar E-Down Doug-Fir E-Down Hemlock All Sp.	1 1 2 2 2 3 6	49.74 49.74 50.96 50.96 252.52 353.21	56.00 56.00 78.24 78.24 43.05 51.47	113.56 113.56 286.51 286.51 363.51 763.58	73.13 73.13 180.69 180.69 336.05 589.87	65.18 65.18 166.36 166.36 314.24 545.79	49.63 49.63 123.36 123.36 302.73 475.71	1509	21 21 11 11 39	.1 .0 .0
		16 12.250F	70	Doug-Fir Hemlock All Sp.	1 2 3	18.55 54.18 72.73	91.70 75.88 80.21	160.35 332.60 492.95	158.27 330.61 488.87	150.25 310.65 460.90	150.09 310.65 460.74	1509	11 39	

Plot Summary

30

FIZ: B

PSYU: Nootka

Plot Frequency Report

FIZ: B

28-Sep-2015 07:52:52PM

Average Line Method

AVCF

PSYU: Nootka

Filename: comm_for_blk2_LF_typed.ccp

Compiled by: F Warren and Associates Ltd

PLFRQ- 1 , p64

Licence Number: COMM CP: PRE

Computerized Decay Computerized Waste Computerized Breakage

Grades: MOF Computerized

Region: 2 - West Coast Cruised by: AZMETH District: 04 - South Island

Version: 2015.00 IFS build 5947

Measure Plots

Project: AVCF

Blocks	Timber 1	Type 2
BLOCK 002 (M) # of Plots ha / Plot	9 0.71	7 0.81
Cutting Permit # of Plots ha / Plot	9 0.71	7 0.81

Plot Frequency Report

FIZ: B

PSYU: Nootka

28-Sep-2015 07:52:52PM

Average Line Method

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

PLFRQ- 2 , p65

Licence Number: COMM CP: PRE

Computerized Waste
Computerized Breakage

Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Measure Plots

Project: AVCF

Harvest Methods	Timber 1	Type 2
METHOD CC # of Plots ha / Plot	3 0.80	0.88
METHOD HL # of Plots ha / Plot	6 0.67	
METHOD SC # of Plots ha / Plot		2 0.65
All Methods # of Plots ha / Plot	9 0.71	7 0.81

Plot Frequency Report FIZ: B

PLFRQ- 3 , p66 28-Sep-2015 07:52:52PM

Average Line Method

AVCF

Licence Number: COMM CP: PRE

Grades: MOF Computerized Computerized Decay Computerized Waste

Computerized Breakage

PSYU: Nootka

Region: 2 - West Coast District: 04 - South Island Compiled by: F Warren and Associates Ltd Cruised by: AZMETH

Version: 2015.00 IFS build 5947

Filename: comm_for_blk2_LF_typed.ccp

Count Plots

Project: AVCF

Blocks Timber Type 1 2

BLOCK 002 (M) # of Plots ha / Plot

Cutting Permit # of Plots ha / Plot

Plot Frequency Report FIZ: B

PSYU: Nootka

28-Sep-2015 07:52:52PM

Average Line Method

Grades: MOF Computerized Computerized Decay

Filename: comm_for_blk2_LF_typed.ccp Compiled by: F Warren and Associates Ltd

PLFRQ- 4 , p67

Licence Number: COMM CP: PRE

Computerized Waste Computerized Breakage Region: 2 - West Coast District: 04 - South Island Cruised by: AZMETH Version: 2015.00 IFS build 5947

Count Plots

Project: AVCF

AVCF

Harvest Methods Timber Type 1 2

METHOD CC
of Plots
ha / Plot

METHOD HL # of Plots ha / Plot

METHOD SC
of Plots
ha / Plot

All Methods # of Plots ha / Plot

TERRAIN STABILITY FIELD ASSESSMENT Cutblocks 1 and 2

SUMMARY

Cutblock1

Apart from the one area mentioned below, this cutblock has a *Very Low to Low* potential for post-harvest landslides.

Polygon 2 of Heli-Unit A has a *Moderate to High* potential for post-harvest landslides. I understand that this area will be deleted from the proposed cutblock.

Cutblock 2

Polygon 1 of Heli-Unit A 1 has a *Moderate* potential for small landslides and *High* for rockfall.

Roads

For Spur 1 between Stn. 47 and Stn. 48, no sidecasting over steep bedrock located just downslope of centerline.

For Spur 3, Partial Endhaul between Stn. 29 and Stn. 36 will result in a *Low* potential for Fillslope failures.

For Spur 3, Stn. 49 to Stn. 51, I recommend: Have a Professional Engineer (with experience in bedrock mechanics) assess this segment, or have a Qualified Professional on-site during road building, or end the road at Stn. 49 and helicopter yard the remaining area.

For Spur 3, from Stn. 55 -10m to Stn. 62-5m, and from Stn. 63 to Stn. 64+5m, Full Bench Endhaul reduces the potential for Fillslope failures to *Low*.

For Spur 4, between Stn. 4 and Stn. 8, Full Bench Endhaul reduces the potential for Fillslope failures to *Low*.

For Spur 4a, between Stn. 0+016 and Stn. 0+030, Full Bench Endhaul reduces the potential for Fillslope failures to *Low*.

Safety Hazards

Workers should be made aware of the potential for rockfall from within and upslope of many areas in both cutblocks.

Terrain Risk Associated with Windthrow

If post-harvest windthrow occurs from FCA2 to FCA4, it would likely contribute to landslide initiation with a slide going directly into Stream 1. If it occurs from FC55 to FCE3, it would likely contribute to landslide initiation with a slide going directly into Stream 7. If Polygon 2 of Cutblock 1 Heli-Unit A is deleted from the proposed cutblock and windthrow occurs in this area, it would likely contribute to landslide initiation with a slide going directly into Stream 1.

INTRODUCTION

Geoforestry Consulting was retained by Novafor Forest Services Ltd. to assess the terrain-related hazards for the proposed Cutblocks 1 and 2 in the Sutton Creek drainage system. I inspected the area on August 28th, September 3rd, 8th, and 17th, 2015. It was generally cloudy with light rain each day.

Information reviewed prior to my field assessment consisted of:

- 1:5,000-scale contour map showing boundary locations.
- Aerial photographs were not available.
- Google Earth 3D Images
- 1:5,000 Terrain Map

The proposed cutblocks were partially ribboned and traversed at the time of the assessment. The cutblocks will be harvested by a combination of conventional clearcutting and helicopter yarding.

Location

The proposed cutblocks are located a short distance to the west of the western end of Sproat Lake. They are situated on north-facing slopes overlooking several tributaries to Sutton Creek.

Access to the area is via the TA568 road systems.

General Description of Cutblocks

The proposed cutblocks are laid out over an area roughly 1.6 km long by up to about 900 m wide. The blocks consist of many areas separated by considerable distances in some places. Please see the accompanying maps for the location and size of the units within the two cutblock.

Bedrock Geology

Bedrock in the area consists mainly of the Triassic-aged Karmutsen Volcanics. Bedrock outcrops are common throughout the proposed development and include mainly basalt. There may be Jurassic-aged rocks of the Island Intrusions in the area.

Bedrock outcrops form a series of steep bluffs and gently-sloping benches throughout the proposed development area. This could reflect regional bedrock faulting patterns or possibly bedrock subsidence activity. Some of the steep bedrock outcrops are unstable.

Surficial Geology

Soils throughout the proposed cutblocks are generally thin and there is an abundance of bedrock outcroppings in the area. Soils are locally deeper where colluvium has collected and this is often coarse material.

There do not appear to be deep till deposits in the area.

Downslope Resources

The proposed cutblock is located within the Sproat Lake Community Watershed.

As far as I am aware, there are no fish-bearing streams located within the proposed cutblocks but the streams within are mapped as S4. Streams 1 and 7 are mapped as \$2.

From most areas within the proposed cutblocks, the potential for landslide runout is considered short due to coarse materials and the step-bench topography; benches are generally broad enough to stop landslides. A small portion of Cutblock 1 slopes towards Stream 1 and a small portion of Cutblock 2 slopes towards Stream 7. If landslides occur in these areas they could go into either stream.

Existing Landslides

The surrounding area was inspected for evidence of existing landslides on the air photos, on the drive and flight to the cutblock, and during the ground inspection. Determination of the cause of the landslides outside of the cutblock is important because the conditions present in the initiation zone can be compared to the conditions within the proposed cutblock and/or road alignment. Should similar conditions be found to exist, thorough field observations should be carried out to ensure stability.

As mentioned above, bedrock outcrops form a series of steep bluffs and gentlysloping benches throughout the proposed development area. The upslope edges of some of the steep bedrock outcrops are fractured and some are failing/sliding. In Unit A of the conventional portion of Cutblock 2, there is what appears to be a large rockslide feature. It is well over 50 m wide and 150 m long. There is abundant coarse colluvium through the area and downslope of it. Some of the bedrock on the margins of the feature is heavily fractured and unstable.

There are two other smaller similar areas located just outside of the falling boundary; one is located downslope of CC Unit B, Polygon 1 and the other just downslope of CC Unit A.

There are numerous rock bluffs located within and along the upper edge of the proposed cutblock. Some of these bluffs could have fracture zones and could fail during or after harvesting activities. Workers should be made aware of this potential safety hazard.

There is a small probable landslide scar located along Stream 3 in the northwestern portion of Cutblock 1 (Heli Unit A, Polygon 2). The feature is about 10 to 12 m wide by 1 m deep. Soils are deeper here than in most other areas and contain abundant fine rubble. The soils have poor strength. There are several leaning coniferous trees and it appears that a larger landslide could occur.

Other than the landslide mentioned above and failures along the edge of steep rock outcrops, there does not appear to be many open-slope landslides in the proposed development area.

TERRAIN STABILITY HAZARD RATINGS

A terrain stability hazard rating is the estimated potential for landslide initiation in a given area after road building and/or logging. Determination of a hazard rating is based primarily on the following:

- Hillslope gradient
- Topography
- > Surficial material type, texture, and structure
- Derived soils, their texture and drainage
- Bedrock geology of the area
- Vegetation, primarily wet-site indicators
- Evidence of previous landslides or indications of active instability
- Experience in similar terrain with similar geological conditions
- Proposed yarding methods and road location and design
- Potential changes to the natural hillslope drainage pattern
- > The effects of root decay

The following are some reference reports that explain in part how I arrive at the hazard ratings presented in this report.

- The report "Terrain Stability Management Strategy for Rennell Sound" by this investigator, May, 2005
- > The report "Some Relationships between Bedrock, Shallow Landslides, and Forest Practices", June, 2003, by this investigator
- WFP Terrain Risk Management Strategy, March 2012

A four-class system (Very Low, Low, Moderate, or High) is used to describe the terrain stability hazard rating of a given area or road section. The criteria used for this classification system can be found in the attached Appendix A.

Consequence refers to the anticipated damage caused by a potential landslide. Damage is quantified by first estimating the composition, size, and runout distances of slides. Then the following downslope entities are considered:

- Human safety
- The potential to damage infrastructure such as roads or buildings
- environmentally sensitive receptors such as fish-bearing drainages
- Loss of resource and site degradation

The potential runout distances for slides and their downslope impacts are described in Table 1.

FIELD OBSERVATIONS AND HAZARD MITIGATION OPTIONS

Terrain Hazards Related to Harvesting

The following Table 1 includes observations of the geological conditions and hillslope gradient and topography within an area of the opening. Based on the observations, an area has been assigned a terrain stability hazard rating. I have mapped out areas of homogenous terrain conditions and hazard ratings into polygons, which are shown on the accompanying map of the opening. The delineation of each polygon is completed in the field and is an approximation, based on tying into falling corners and topographic maps.

For each polygon, should a slide be triggered (even Low hazard polygons can have slides), the downslope impacts of a slide, including anticipated runout distance and interceptors are described.

Terrain Hazards Related to Road Construction

The following Table 2 includes observations of the geological conditions and hillslope gradient and topography along a specified segment of the proposed road alignment. Based on the observations, each specified road segment has

been assigned a post-construction hazard rating for conventional construction techniques. Each specified road segment is based on having homogenous terrain conditions and hazard ratings and is delineated in the field.

For road segments that have a higher than Low post-construction failure rating, alternative construction options and the post-construction failure ratings are The hazard ratings provided in this table include the potential provided. instability from road fillslopes and cutslopes and road drainage.

Table 1. Geological Observations, Terrain Hazard and Consequences for Polygons in Cutblocks 1 & 2

Polygon	General Polygon Description	Geological Conditions	Hillslope Gradient and Topography	Terrain Stability	Consequence of a Landslide	Remarks
	Description	Conditions	Topograpmy	Hazard	a Hallusliue	
Cutblock 1						
CC Unit A						
1	This polygon is located in the northern portion of Unit A.	Generally thin soils and bedrock outcrops.	Rolling and irregular topography. Generally 40 to 60% but with some gently-sloping areas and	Low, with some Very Low	A landslide would likely be small but could potentially travel along Stream 3 and go into Stream 1 (not from the eastern portion of this polygon).	
2	Polygon 2 is located in the southern portion of Unit A.	Generally thin soils and bedrock outcrops.	Rolling and irregular topography with much of the ground at less than 25%. Short steep sections on bedrock outcrops.	Very Low, with some Low.	A landslide would likely be very small or smaller and travel less than 25 m.	
CC Unit B						
1	This polygon occupies all of Unit B.	Generally thin soils and bedrock outcrops. Stream 6 is generally weakly incised.	Variable topography with some 50 to 65% ground downslope of centerline with 8 to 10 m of steeper bedrock below that. 40 m of less than 30% slope along Stream 6.	Low and Very Low	A landslide would likely be very small or smaller and travel less than 25 m.	
Cutblock l Heli						
Unit A						
1	Polygon 1 is located in the northern portion of Unit A. The ground in this polygon slopes towards Stream 1.	Thin soils with bedrock outcrops and some pockets of deeper colluvium.	65 to 80% with irregular topography.	Low	A landslide could be small to moderate in size and could go directly into Stream 1.	

Page 9

September, 2015

Polygon	General Polygon Description	Geological Conditions	Hillslope Gradient and Topography	Terrain Stability Hazard	Consequence of a Landslide	Remarks
2	This polygon is located in the southern portion of Unit A.	Deep silty-rubbly soils with a probably landslide headwall along Stream 3. The landslide appears to be about 10 to 12 m wide and 1 m deep. A larger slide of possibly over 20 m wide could occur.	75 to over 80%. Soils have poor strength.	Moderate to High	A landslide could be small to moderate in size and would go directly into Stream 1.	
Unit B						
1	Polygon 1 occupies all of Unit B.	Generally thin soils and bedrock outcrops.	Much of the ground in this polygon is gently-sloping. Some moderately-sloping ground in the southwestern portion.	Very Low, with some Low	A landslide would likely be very small or smaller and would likely travel less than 25 m.	
TT '' G						
Unit C	Polygon 1 occupies all of Unit C.	Generally thin soils and bedrock outcrops. Some coarse colluvium. 15 to 25 m high bedrock outcrop upslope of falling boundary.	Gently-sloping ground in the northeastern portion. Moderate to locally steep in the western portion. There is a large gently-sloping bench located downslope of the western portion of the unit.	Low, with some Very Low	A landslide would likely be small and could travel up to about 75 to 100 m in the western portion of the unit.	Workers should be made aware of the potential for rockfall from upslope of the eastern portion of this polygon.

Polygon	General Polygon Description	Geological Conditions	Hillslope Gradient and Topography	Terrain Stability Hazard	Consequence of a Landslide	Remarks
Unit D						
1	Polygon 1 occupies all of Unit D.	Generally thin soils and bedrock outcrops. Several weakly incised small streams. Some coarse colluvium. 25 m high bedrock outcrop upslope of falling boundary. Up to 50 m bluff downslope.	Most of the ground has a hillslope gradient of less than 25%. The ground in the upper portion of the area is located on the toe of steep ground along the bedrock outcrops.	Very Low, with some Low.	A landslide would likely be very small or smaller and would stop in this polygon.	Note that the gently-sloping ground is located downslope of the steep ground and is wide enough to stop a small landslide. Workers should be made aware of the potential for rockfall from upslope of this polygon.
Unit E						
1	Polygon 1 occupies all of Unit A.	Generally thin soils. Up to 5 m high bedrock outcrops exposed in the uppereastern portion of the unit.	Steep in the upper eastern portion; otherwise generally gently-sloping. Irregular topography. Stream 6 has a 15 m long section where it flows over steep bedrock in what is probably a bedrock fault.	Low and Very Low	If a landslide does occur it would be very small or smaller and would stop in this polygon.	
Cutblock 2						
Unit A						
1	Polygon 1 is located in the eastern portion of Unit A.	Generally thin soils with scattered bedrock outcrops.	Variable topography with short steep sections on bedrock outcrops, some small gently-sloping benches, and much ground in the 40 to 60% range.	Low	A landslide would likely be small to moderate in size and could travel up to about 150 m.	

Polygon	General Polygon Description	Geological Conditions	Hillslope Gradient and Topography	Terrain Stability Hazard	Consequence of a Landslide	Remarks
2	This polygon is located in the western portion of Unit A.	This polygon is located in what is possibly a bedrock landslide zone. There is abundant coarse colluvium within the area and fractured bedrock around the perimeter.	45 to 70% with short steeper sections on bedrock outcrops.	Low for landslides, High for rockfall.	Due to the coarse material in the polygon, a landslide would likely not travel far.	Workers should be made aware of the potential for rockfall from within and upslope of this polygon.
Unit B						
1	Polygon 1 is located in the downslope or northern portion of Unit B.	Moderately well to well drained soils derived from weathered bedrock and colluvium. Fractured bedrock outcrops to about 7 m high.	Steep ground with irregular topography.	Low for landslides, High for rockfall.	A landslide would likely be small to possibly moderate in size and could travel over 100 m to gently-sloping ground.	Workers should be made aware of the potential for rockfall from within this polygon.
2	This polygon is located in the upper or southern portion of Unit B.	Thin soils and bedrock outcrops.	Generally less than 25% but with short moderately steep to steep sections.	Mostly Very Low, some Low	A landslide would likely be very small or smaller and would stop in this polygon.	
Unit C						
1	Polygon 1 occupies the downslope or northern portion of Unit C.	Thin soils and bedrock outcrops.	Generally less than 25%.	Very Low	N/a.	
2	This polygon is located in the upper portion of Unit C. The ground in this polygon slopes towards Polygon 1.	Thin soils and bedrock outcrops.	45 to locally over 60%.	Low	A landslide would likely be very small to small and would stop in Polygon 1.	

gon General Polygon Geological Hillslope Gradient and Description Conditions Topography		Terrain Stability Hazard	Consequence of a Landslide	Remarks	
Polygon 1 occupies all of Unit A.	Generally thin soils and bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar.	Generally steep at up to over 80% locally.	Moderate for landslides, High for rockfall.	If a landslide does occur it would likely be small and travel about 75 to 100 m.	Workers should be made aware of the potential for rockfall from within and upslope of this polygon.
Polygon 1 is located in the lower portion of Unit B.	Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops.	Generally less than 30% but with some short steeper sections including a 5 to 7 m high fractured bedrock bluff.	Very Low, with some Low	A landslide would be smaller than very small and would stop in this polygon.	The fractured bedrock does not appear to be a large feature but workers should be made aware of the potential for rockfall in this area.
This polygon is located in the upper portion of Unit B.	Moderately well to well drained soils derived mainly from weathered bedrock.	Generally 40 to 55% with some ground to 65%.	Low	A landslide would likely be small or very small and would stop in this polygon or in Polygon 1.	
Polygon 3 is located along the eastern edge of Unit B. The ground in this polygon slopes towards Stream 7.	Moderately well drained soils derived mainly from weathered bedrock.	25 to 50%.	Low	A landslide would likely be small to moderate in size and would go into Stream 7.	
	Polygon 1 is located in the lower portion of Unit B. This polygon is located in the upper portion of Unit B. Polygon 3 is located along the eastern edge of Unit B. The ground in this polygon	Unit A. bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar. Polygon 1 is located in the lower portion of Unit B. This polygon is located in the upper portion of Unit B. The ground in this polygon bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar. Moderately well to well drained soils derived mainly from weathered bedrock. Moderately well to well drained soils derived mainly from weathered bedrock. Moderately well drained soils derived mainly from weathered bedrock.	Unit A. bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar. Polygon 1 is located in the lower portion of Unit B. This polygon is located in the upper portion of Unit B. This polygon is located in the upper portion of Unit B. This polygon is located in the upper portion of Unit B. Polygon 3 is located along the eastern edge of Unit B. The ground in this polygon bedrock outcrops. Some outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small with some short steeper sections including a 5 to 7 m high fractured bedrock bluff. Generally less than 30% but with some short steeper sections including a 5 to 7 m high fractured bedrock bluff. Generally 40 to 55% with some ground to 65%.	Polygon 1 occupies all of Unit A. Generally thin soils and bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar. Polygon 1 is located in the lower portion of Unit B. This polygon is located in the upper portion of Unit B. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops. Moderately well to well drained soils derived mainly from weathered bedrock outcrops. Generally steep at up to over 80% locally. Moderately well to well drained soils derived mainly from weathered bedrock. Generally less than 30% but with some short steeper sections including a 5 to 7 m high fractured bedrock bluff. Generally 40 to 55% with some ground to 65%. Generally 40 to 55% with some ground to 65%. Low the upper portion of Unit B. Soils derived mainly from weathered bedrock.	Polygon 1 occupies all of Unit A. Generally thin soils and bedrock outcrops. Some outcrops are fractured. One section with J-stemmed regenerating coniferous trees; could be a small rockslide scar. Polygon 1 is located in the lower portion of Unit B. This polygon is located in the upper portion of Unit B. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock outcrops. Moderately well to well drained soils derived mainly from weathered bedrock. Moderately well to well drained soils derived mainly from weathered bedrock. Moderately well drained soils derived mainly from weathered bedrock. Moderately well drained soils derived mainly from weathered bedrock. Moderately well drained soils derived mainly from weathered bedrock. Moderately well drained soils derived mainly from weathered bedrock. Scattered bedrock. Description of Unit B. Moderately well to well drained soils derived mainly from weathered bedrock. Description of Unit B. Moderately well to well drained soils derived mainly from weathered bedrock. Scattered bedrock. Description of Unit B. Moderately well to well drained soils derived mainly from weathered bedrock. Description of Unit B. Low A landslide would likely be small to twell be amaily from weathered bedrock. Scattered bedrock bluff. Description of Unit B. Low A landslide would likely be small to twell be amaily from weathered bedrock. Scattered bedrock with some short steeper sections including a 5 to 7 m high fractured bedrock bluff. Scattered bedrock bluff. Scattered bedrock bluff. Description of Unit B. Low A landslide would likely be small to twell be small and travel about 75 to 100 m.

General Polygon Description	Geological Conditions	Hillslope Gradient and Topography	_		Remarks
Polygon 1 occupies all of Unit C.	Moderately well drained soils derived from weathered bedrock and colluvium. Scattered bedrock outcrops to 15 m high.	Variable topography with a 30 m wide, gently-sloping bench located in the central and eastern portion of the area. Steep bedrock outcrops along the southern edge.	Low	A landslide would likely be very small and stop in this polygon.	
Polygon 1 occupies all of Unit D.	Generally thin soils derived from weathered bedrock. Some bedrock outcrops.	Gently-sloping ground along the upslope edge of the polygon. 40 to 60% in the lower portion with some short steeper sections on bedrock outcrops.	Low	A landslide would likely be very small to small and would probably travel less than 50 m.	
Polygon 1 occupies all of Unit E.	Moderately well to well drained soils derived from weathered bedrock. Scattered bedrock outcrops.	Less than 60%.	Low	A landslide would likely be small initially but could possibly go into Stream 7.	
	Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit D.	Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit E. Moderately well drained soils derived from weathered bedrock. Some bedrock outcrops.	Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit D. Moderately well drained soils derived from weathered bedrock and colluvium. Scattered bedrock outcrops to 15 m high. Generally thin soils derived from weathered bedrock. Some bedrock outcrops. Gently-sloping ground along the upslope edge of the polygon. 40 to 60% in the lower portion with some short steeper sections on bedrock outcrops. Polygon 1 occupies all of Unit E. Moderately well to well drained soils derived from weathered bedrock. Less than 60%.	Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit C. Polygon 2 occupies all of Unit C. Polygon 3 occupies all of Unit D. Polygon 3 occupies all of Unit D. Polygon 4 occupies all of Unit D. Polygon 5 occupies all of Unit D. Polygon 6 occupies all of Unit D. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Low Low Low Low Low Low Low Lo	Polygon 1 occupies all of Unit C. Polygon 1 occupies all of Unit D. Polygon 1 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 4 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 4 occupies all of Unit E. Polygon 5 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 8 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 4 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 4 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 4 occupies all of Unit E. Polygon 5 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 1 occupies all of Unit E. Polygon 2 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 3 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 6 occupies all of Unit E. Polygon 8 occupies all of Unit E. Polygon 9 occupies all of Unit E. Polygon 1 occupi

Table 2. Hazard Rating and Consequences for Construction Options – Spurs 1 to 5

Road	Hillslope	Geological Conditions	Construction	Post	Road	Consequence	Remarks
		Geological Collulitoris	Options	Construction	Drainage	of a Slide	Velligiks
Section	Gradient and		Options	Landslide	Hazard	or a price	
	Topography			Hazard	IIazaiu		
				Cutslope/			
				Fillslope			
Spur 1				1 msiope			
_							
Stn. 1 –	Generally less than	Thin soils and bedrock outcrops.	Conventional	Very Low/	Low	N/a.	
Stn. 19	25% with short	Possibly some till. Some wet areas.		Very Low			
	sections of steeper						
	ground.						
Stn. 19 –	Along edge of heli-	Thin soils and bedrock.	Conventional	Low/ Low	Low	A landslide	
Stn. 22	clearcut. Some -40 to					would be very	
	50% with a 4 to 5 m					small or smaller	
	drop below that.					and travel less	
	Gently-sloping ground					than 20 m.	
	at the toe of the						
	steeper ground and						
	upslope of centerline.						
Stn. 22 –	Rolling topography	Thin soils and bedrock outcrops.	Conventional	Low and Very	Low	A landslide	
Stn. 43	with scattered bedrock			Low for both		would likely be	
	outcrops as well as			Cutslope and		very small or	
	broad gently-sloping			Fillslope.		smaller and	
	areas.					travel less than	
~ 40						25 m.	
Stn. 43 –	Less than 10%.	Thin, moderately well drained	Conventional	Very Low/	Low	N/a.	
Stn. 47 Stn. 47 –	0.4 5 1 1 1	soils.	G (: 1	Very Low	.	71 111	
	3 to 5 m bedrock	Thin soils.	Conventional,	Low/ Low	Low	A landslide	
Stn. 48	outcrop located just		with no			could potentially	
	downslope of		sidecasting			travel down	
	centerline between		over steep			Stream 3 and go	
	Stn. 47 and Stn. 48.		bedrock			into Stream 1.	
C4 40	00.4- 500/ 11.1	m 2	outcrop.	T/T	т.	π 1 1 11 1	
Stn. 48 –	-30 to 50% with less	Thin soils.	Conventional	Low/ Low	Low	A landslide	
Stn. 51	than 25% ground					could potentially	
	located a short					travel down	
	distance upslope of					Stream 3 and go	
	centerline.					into Stream 1.	

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
Spur 2							
Stn. 1 – Stn. 5	Generally less than 25%.	Thin soils and bedrock outcrops.	Conventional	Very Low/ Very Low	Low	N/a.	
Spur 3							
Stn. 1 – Stn. 29	Not assessed.			Assumed to be Very Low to Low			
Stn. 29 – Stn. 36	The alignment is located just upslope of a 6 to 10 m high and steep bedrock outcrop20 to 40% for	Thin soils and bedrock.	Conventional	Low/ Moderate	Low	A landslide would travel less than 20 m.	
	up to 4 m with 6 to 10 m drop below. Downslope of that is a 40 to 50 m wide, gently-sloping bench.		Partial Endhaul	Low/ Low	Low	As above.	This option reduces the potential for Fillslope failures to Low.
Stn. 36 – Stn. 40	Centerline is located just upslope of a small bench.	Thin soils and bedrock.	Conventional	Low/ Low	Low	A landslide could likely travel less than 50 m.	
Stn. 40 – Stn. 44	Less than 10%.	Moderately well drained soils derived from colluvium.	Conventional	Very Low/ Very Low	Low	N/a.	

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
Stn. 44 – Stn. 49	-45 to 60%, +60 to 70%.	Coarse colluvium.	Conventional	Low/ Low	Low	A landslide could travel over 100 m downslope.	
Stn. 49 – Stn. 51+5m	The alignment crosses through the edge of a large bedrock failure. Over -80% for over 10 m; over 75% upslope for less than 10 m and then less than 65%.	It is difficult to determine if there are fractures within the bedrock or if the material is all coarse colluvium. It might not be possible to develop a stable road prism through this segment.	Conventional	Moderate?/ High	Low	A landslide could be moderate to large in size but would likely travel less than 150 m downslope.	

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
			If competent bedrock does exist through this segment, then Full Bench Endhaul with a Cutslope Angle of 3:1 should be stable.				Have a Professional Engineer (with experience in bedrock mechanics) assess this segment, or have a Qualified Professional on- site during road building, or end the road at Stn. 49 and helicopter yard the remaining area.
Stn.51+5m- Stn. 55-10m	40 to 50%.	Moderately well drained soils; fairly brushy ground.	Conventional	Low/ Low	Low	A landslide could travel over 100 m downslope.	
Stn.55-10m -Stn.62-5m	Over -60% for over 10 m and +65 to 70%.		Conventional	Low/ Moderate	Low	A landslide could travel over 100 m downslope.	
			Full Bench Endhaul	Low/ Low	Low	Little material available to slide.	This option reduces the potential for Fillslope failures to Low.
Stn.62-5m – Stn. 63	-10 to 20% for less than 10 m and +35 to 50%.	Moderately well drained folisols.	Conventional	Low/ Very Low	Low	A cutslope failure would likely stop on the road.	

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
Stn. 63 – Stn.64+5m	Over -60% for 10 to 15 m. Less than 5 m high bedrock outcrop upslope of centerline.	Thin soils and bedrock outcrops.	Conventional	Low/ Moderate	Low	A landslide could travel over 100 m downslope.	
			Full Bench Endhaul	Low/ Low	Low	Little material available to slide.	This option reduces the potential for Fillslope failures to Low.
Stn.64+5m - Stn. 66	-30 to 45%, +50 to 65%.	Moderately well drained folisols.	Conventional	Low/ Low	Low	A landslide could potentially travel over 150 m into the Stream 7 system.	
Spur 4							
Stn. 1 –	00 / 400/	Till 1 (1 1)	a .: 1	7 /7	.	* 1 1 1 1	
Stn. 4	30 to 40%.	Fillslope of built road.	Conventional	Low/ Low	Low	A landslide would likely be very small to small and would probably travel less than 50 m to a bench.	
Stn. 4 – Stn. 8	Up to -65% and +80.	Road fillslope and colluvium.	Conventional	Low/ Moderate	Low	As above.	
			Full Bench Endhaul	Low/ Low	Low	Little material available to slide.	This option reduces the potential for Fillslope failures to Low.
Stn. 8 – Stn. 22	Generally less than 25% with short steeper sections.	Thin soils and scattered bedrock outcrops.	Conventional	Very Low, with some Low for both Cutslope and Fillslope.	Low	N/a.	

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
Stn. 22 – Stn. 23	Short section of -45 to 55%.	Thin soils and bedrock.	Conventional	Low/ Low	Low	A landslide would likely be small initially but could potentially travel over 150 m downslope.	
Stn. 23 – Stn. 26	Less than 15%.	Thin soils and bedrock.	Conventional	Very Low/ Very Low	Low	N/a.	
Spur 4a							
0+000 - 0+016	Less than 45%.	Thin soils and bedrock outcrops.	Conventional	Low/ Low	Low	A landslide would likely be small initially but could potentially travel over 150 m downslope.	
0+016 - 0+030	Over 60% with irregular topography.	Thin soils and bedrock outcrops.	Conventional	Low/ Moderate	Low	A landslide would likely be small initially but could potentially travel over 150 m downslope.	
			Full Bench Endhaul	Low/ Low	Low	Little material available to slide.	This option reduces the potential for Fillslope failures to Low.

Road Section	Hillslope Gradient and Topography	Geological Conditions	Construction Options	Post Construction Landslide Hazard Cutslope/ Fillslope	Road Drainage Hazard	Consequence of a Slide	Remarks
0+030 - 0+041	Less than 55%.	Thin soils and bedrock outcrops.	Conventional	Low/ Low	Low	A landslide would likely be small initially but could potentially travel over 150 m downslope.	
Spur 5							
Stn. 1 – End	Less than 25%.	Generally thin soils and scattered bedrock outcrops.	Conventional	Very Low	Low	N/a.	

Page 20

September, 2015

GULLIES, GULLY-LIKE FEATURES, and FANS

This section lists and describes significant gullies, gully-like terrain, and fans within and adjacent to the proposed cutblock. The purpose of this section is to alert foresters and managers to these features in order to facilitate management of windthrow and sediment.

Stream 1

Stream 1 flows adjacent to the western edge of Cutblock 1. I was able to observe the stream only from the northwestern corner of the proposed cutblock. The stream has a high flow potential and is transporting material to boulder size. It generally has steep sidewalls and there are some sidewall landslides like the one located in Polygon 2 of Heli-Unit A.

Stream 7

Stream 7 is a massive gully system that is located in the eastern end of the proposed development area. The system is well over 150 m wide with steep to extremely steep sidewalls. There are numerous landslides, rockslides, gullies, and snow avalanche zones within the larger gully system. The active channel is over 10 m wide and transporting abundant material to boulder size.

TERRAIN RISK ASSOCIATED WITH WINDTHROW

This section deals with the anticipated terrain hazard and consequence should windthrow occur along an edge of the cutblock following harvesting. This section is not a windthrow hazard assessment; it is intended to be used by the silvicultural prescription writer, layout engineers, and managers as a guide for possible edge treatments such as topping or pruning. Only those edges that I consider to have significant terrain risk associated with windthrow are included below. If the layout crew determines that the hazard of windthrow is low, then treatment of the edge would likely not be required.

Segment A – Stream 1; FCA2 to FCA4

Stream 1 is described above in the Gullies section of the report. If post-harvest windthrow occurs along the edge of this boundary, it would likely contribute to landslide initiation. A landslide would likely be small to moderate in size and would go directly into Stream 1.

Segment B – Stream 7; FC55 to FCE3

Stream 7 is described above in the Gullies section of the report. If post-harvest windthrow occurs along this boundary segment it would likely contribute to

landslide initiation. A landslide could potentially be large and would go directly into Stream 7.

Segment C; Cutblock 2 Heli-Unit A Polygon 2

This polygon is described above in the Gullies section of the report. If this polygon is deleted and post-harvest windthrow occurs, it would likely contribute to landslide initiation. A slide would likely be small to moderate in size and would go directly into Stream 1.

CONCLUSIONS

The proposed cutblocks are located in an area with step-bench topography that is bedrock-controlled. Much of the ground in the cutblocks is gently-sloping but there are several steep areas. Some of the steep bedrock outcrops have failed including one area that has a proposed road across it. At least two sections of bedrock are actively failing but located outside of the proposed cutblock.

Apart from the one area mentioned below, this cutblock has a very low to low potential for post-harvest landslides. Polygon 2 of Heli-Unit A has a moderate to high potential for post-harvest landslides. I understand that this area will be deleted from the proposed cutblock. Polygon 1 of Heli-Unit A 1 has a moderate potential for small landslides and high for rockfall.

For Spur 1 between Stn. 47 and Stn. 48, no sidecasting over steep bedrock located just downslope of centerline. For Spur 3, Partial Endhaul between Stn. 29 and Stn. 36 will result in a low potential for Fillslope failures. For Spur 3, Stn. 49 to Stn. 51, I recommend: Have a Professional Engineer (with experience in bedrock mechanics) assess this segment, or have a Qualified Professional on-site during road building, or end the road at Stn. 49 and helicopter yard the remaining area. For Spur 3, from Stn. 55 -10m to Stn. 62-5m, and from Stn. 63 to Stn. 64+5m, Full Bench Endhaul reduces the potential for Fillslope failures to low. For Spur 4, between Stn. 4 and Stn. 8, Full Bench Endhaul reduces the potential for Fillslope failures to low. For Spur 4a, between Stn. 0+016 and Stn. 0+030, Full Bench Endhaul reduces the potential for Fillslope failures to low.

Workers should be made aware of the potential for rockfall from within and upslope of many areas in both cutblocks.

If post-harvest windthrow occurs from FCA2 to FCA4, it would likely contribute to landslide initiation with a slide going directly into Stream 1. If it occurs from FC55 to FCE3, it would likely contribute to landslide initiation with a slide going directly into Stream 7. If Polygon 2 of Cutblock 1 Heli-Unit A is deleted from the proposed cutblock and windthrow occurs in this area, it would likely contribute to landslide initiation with a slide going directly into Stream 1.

LIMIT OF LIABILITY

This report provides an assessment of the potential for terrain instability following timber harvesting in accordance with the harvesting plans disclosed to Geoforestry Consulting.

The evaluation of the hazards contained within this report is based upon limited visual inspection of surface expression, road cuts, slope failures, gullies, and/or shallow soil pits in the proposed harvesting area along with our experience in similar terrain. It represents our professional opinion of the hazards in the area assessed. However, it is not intended to be a guarantee or warranty of the actual conditions or hazards existing in the area. No other surface or subsurface investigation was performed. Accordingly, assessment of the potential for deep-seated bedrock failures is beyond the scope of this report.

Predicting the location or distribution of underground water conduits, zones of soft bedrock, or developing failure plains is beyond the scope of this assessment if they are not expressed on the ground surface in terms of plant growth, surface water flow, or topographic features (draws, bowls, or channels). It is possible during heavy rainfall events that springs will develop in areas where there is no surface expression of existing springs. If a spring develops during a heavy rainstorm, it could trigger a landslide depending upon its location.

Geological conditions other than those indicated in this report may exist in the area assessed. If such conditions are observed, Geoforestry Consulting should be immediately contacted so that this report may be reviewed and amended accordingly.

This report pertains to the circumstances and conditions which apply to the specific harvesting plans disclosed and it can not be reasonably used for any purpose except in order to complete the specific harvesting plans disclosed and by government agencies regulating these specific harvesting activities. It is not reasonable for any third party to rely upon this or any of the observations, opinions or conclusions contained herein and any reliance on or decisions made by third parties based upon this report remains the responsibility of such third parties. Geoforestry Consulting accepts no responsibility for damages, if any, suffered by any third party as a result of any reliance upon this report.

Prepared by:

Jack Whittles, M.Sc., P.Geo.

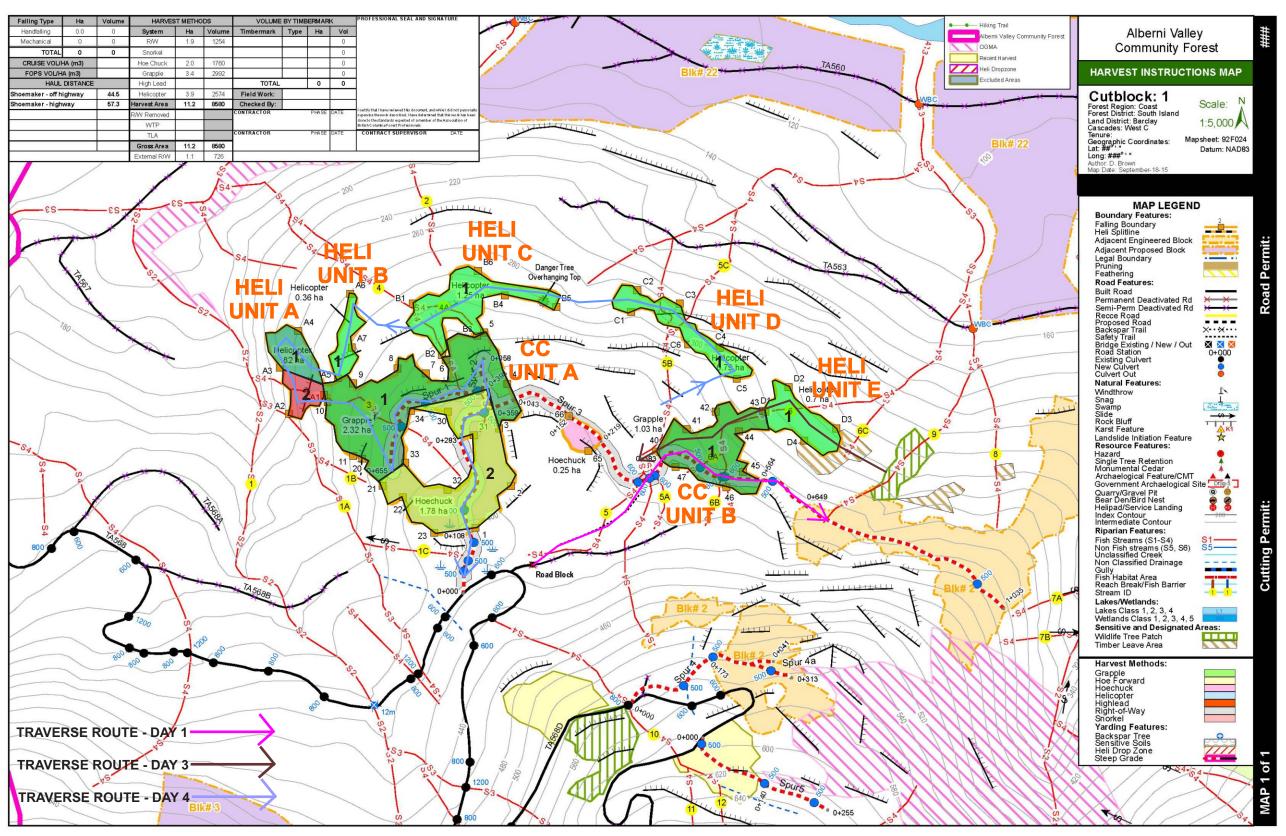
APPENDIX A

(From Western Forest Products Terrain Risk Management Strategy 2012)

Table 1: Terrain Hazard Definitions

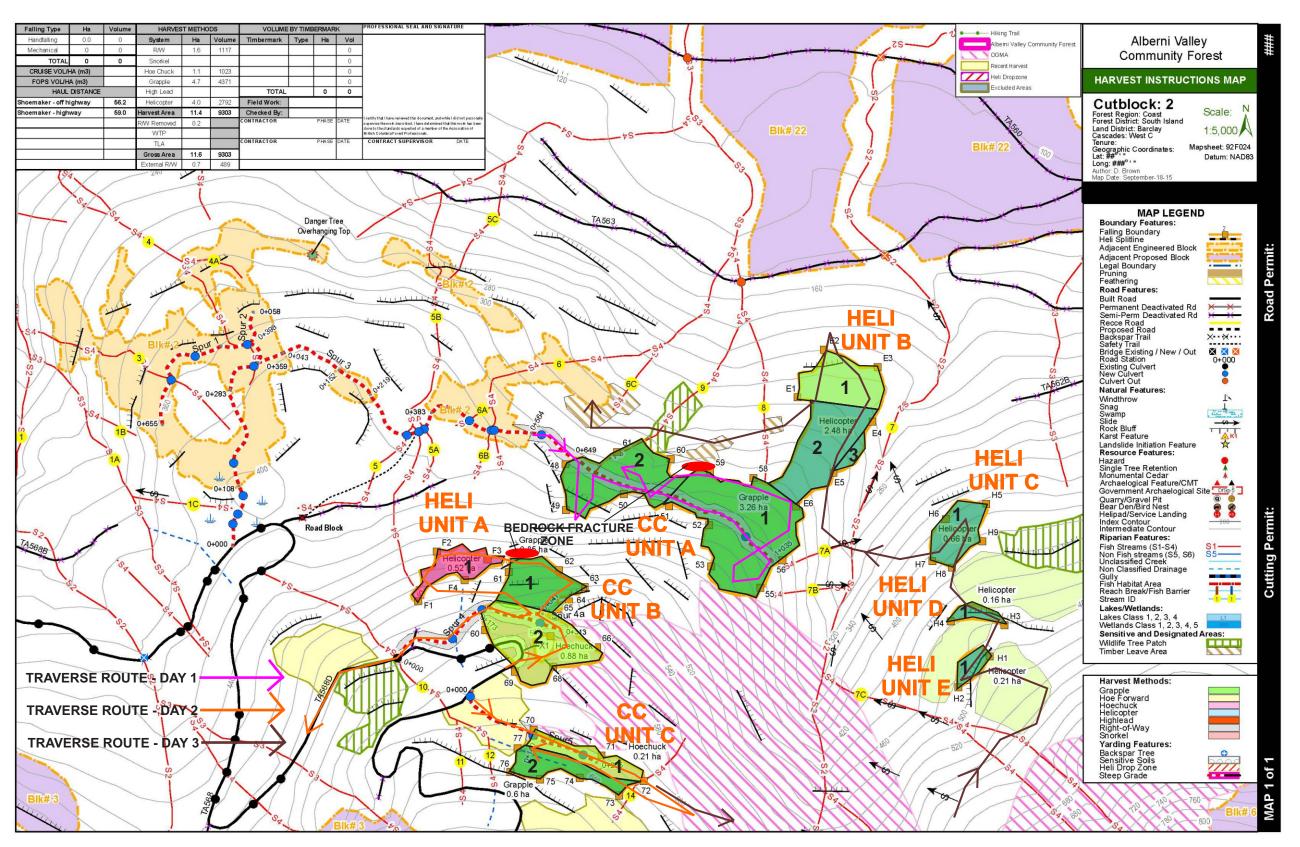
нісн	>5 failures per 100 ha logged on steep		
	terrain.		
MODERATE	3-5 failures per 100 ha logged on steep		
	terrain.		
LOW	1-<3 failures per 100 ha logged on		
	steep terrain.		
VERY LOW	<1 failure per 100 ha logged on steep		
	terrain.		

- ❖ Failure = 0.05 ha event (smallest inventoried and smallest visible on airphotos)
- Steep terrain = Class IV/V; Es1/Es2; P/U; >60%
- Terrain to be evaluated with a 1 in 15 year storm event in mind (100 mm in 24 hrs)


Table 2: Landslide Size

1	0.05 – 0.1 ha	Very Small
2	<0.1 – 0.25 ha	Small
3	<0.25 – 0.5 ha	Medium
4	<0.5 – 1 ha	Large
5	>1 ha	Very Large

Table 3: Consequence Definitions


HIGH	Landslide would directly enter fish stream,			
	fish lake, or marine waters, or water intake			
	for domestic consumption, or jeopardizes			
	lives of the public, or impact major public			
	infrastructure, or other property owner.			
	Landslide would enter nonfish stream			
	within 500 m of fish bearing waters.			
MODERATE	Landslide would enter nonfish stream more			
	than 500 m from fish bearing waters, OR			
	there is a runout slope of <20% for <100 m			
	below landslide to fish bearing waters or			
	intake to a public area, or other property			
	owner.			
LOW	• There is a runout slope of <20% for >200 m			
	below landslide. Some suspended			
	sediment and small woody debris may			
	reach fish habitat/intake, or public area, or			
	other property owner.			
VERY LOW	• There is a runout slope of <20% for >200 m			
	below landslide. Slide material is unlikely			
	to reach stream/intake at time of event or			
	transport to stream. A landslide would not			
1				
	be a public or safety concern; would not			
	be a public or safety concern; would not impact any infrastructure or other property			

Terrain Hazard Assessment- Cutblock Novafor1

Terrain Hazard Assessment- Cutblock Novafor 2

TRAVERSE ROUTE

2282 Seabank Road Courtenay, B.C. V9J 1Y1 office (250) 339-2633 mobile (250) 703-6775 email: michaelcullen@shaw.ca

Alberni Valley Community Forest Corporation 7500 Airport Road Port Alberni, BC V9Y 8Y9

November 17, 2015

Attention: Chris Law RPF

Slope Stability Assessment Select Sections of Block 2 Spur 3 Stn 0+777 to 0+815 – Sutton Pass BC

Summary and Recommendations

As requested Michael Cullen Geotechnical Ltd (MCG) has completed an assessment of slope stability between Stn 0+777 to 0+815 on the proposed Spur 3 road where Geoforestry Consulting identified conditions that warranted review by a rock slope specialist.

The proposed alignment crosses a rockslide deposit located across the crest of stepped bedrock bluffs. It is understood that the road is short term (less than 5 years) and will be constructed using full bench endhaul. We recommend the following (also see Figure 1):

- Minimize the cut slope height by keeping the road width as narrow as possible (with due consideration for safety and water management on the steep grade).
 - o Consider eliminating the ditch line and out slope the subgrade for drainage.
- Use a cut slope angle of 1.2V:1H (120%) in talus and rock slide material.
 - The cut slope will be up to 12m high depending upon bedrock encountered. The slope should be grade staked and a tote road constructed to reach the top of cut.
 - o Remove all loose rock from the surface within 3m of the crest of the cut.
 - o A rock hammer or blasting will be required to deal with larger boulders.
 - Use smaller rock to fill in voids encountered in the cut slope and road surface.
 - o Where possible re-arrange and stack rocks to create interlocked mass.
 - Expect to endhaul between 30 and 40 m³/m of road.
- Use a cut slope angle of 4V:1H (400%) in bedrock.
 - There is insufficient information to determine where bedrock will be encountered in the cut, our best estimate at this time is 1 to 3m.
- There will be very high likelihood of raveling from the cut slope. There will be a high likelihood of small sloughs (less than 0.05ha) from the cut slope. Any failures that occur will run out onto the road prism and possibly onto the moderate slopes below. The safety hazard can be mitigated with the following strategies:
 - Inspect the cut slope daily during operations for signs of instability such as tension cracks, bulges, undercutting, and raveling.
 - o Post signs to warn of rock fall and no stopping.
 - o Maintain good site lines to reduce hazard of vehicle encounter with fallen rock.
 - o Apply conservative rainfall shutdown criteria (75% of normal for area)

- Deactivate the road to prevent access once harvesting is completed.
- Contact MCG or other qualified professional if conditions are other than expected or if there are further concerns over rock stability.

MCG considers that implementing of the above strategies will reduce the safety risk to levels typically accepted in the forest industry.

Geoforesty Consulting have identified a rock fall hazard affecting right of way clearing and falling. MCG concurs with this assessment and recommends that no work or travel be completed on the road segment assessed while falling is occurring upslope.

Introduction

As requested Michael Cullen Geotechnical Ltd (MCG) has completed an assessment of slope stability between Stn. 0+777 to Sta 0+815 of the proposed Spur 3 in Block 2 near Sutton Pass. It is understood that the road is short term (less than 5 years) and will be constructed using full bench endhaul. A Terrain Stability Assessment Report completed by Geoforestry Consulting recommended that a Professional Engineer with experience in bedrock mechanics assess the proposed road section.

The purpose of the work completed by MCG was to assess the stability of the slopes through the subject road section, and provide recommendations for road construction to mitigate safety concerns.

Michael Cullen P.Eng completed an inspection of the road section on November 9 2015 accompanied by Chris Law and Jim Sears. The site inspection included the proposed road centerline alignment as well as the slopes above and below the subject sections.

Observations and Discussion

The proposed road alignment from 0+777 to 0+815 crosses a rock slide deposit that is perched on top of stepped bedrock bluffs. The rock slide initiated from bluffs located approximately 60m upslope of the proposed centerline. There is evidence that the slide carried on past the proposed centerline depositing on the moderate to gentle slopes below the bluff.

The rock slide surface is at an angle of between 70% and 80%, locally the slope increases up to 100% especially just beyond the proposed road centerline at the edge of the rock bluff where progressive ravelling has occurred. The thickness of the slide deposit is estimated at 3 to 5m. The material below the rock slide deposit consist of older talus (colluvium) deposits over bedrock as indicated on Figure 1. The slide deposit consists of sand to boulder size material. Boulders up to 3m diameter were noted.

Based on observations of tree growth the rock slide is estimated at about 300 years old and was possibly triggered the last Cascadia subduction earthquake (which triggered many rock slides in

the area). It appears that there has been ongoing rock fall since this main event as there are boulders on the slope that are clearly less than 300 years old, see Photo 1. Detached rock blocks are present at the head scarp, see Photo 2; the potential for further rock falls is considered high.

More recent rock fall and loose rock blocks sitting on the slope surface will be significantly less stable than the underlying blocks that have undergone some consolidation and void filling. Close to surface the slide deposit is expected to contain voids which may affect cut slope and road prism stability.

The rockslide and underlying talus material has an estimated cohesion of 0 kPa and friction angle of 50 to 55 degrees (excluding loose rocks at surface). The trees growing on the slope are mostly immature and offer little root strength to the slope. Under dry conditions it should be possible to excavate a short term stable slope with an angle up to 120% in the rock slide and talus material. Under saturated conditions, and with time, the stability of the slope will decrease and failures will occur. We consider that the likelihood of ravelling is very high and the likelihood of sloughs (less than 0.05ha) is high, see Appendix 2 for definitions. The volume of any failures is limited by the presence of the rock bluffs above the road alignment and by the height of road cut within the slide and talus deposit. As noted by Geoforestry any landslide that does occur is expected to travel less than 150m beyond the road.

The bedrock exposed on the bluff just below the road alignment (and expected to be encountered in the cut slope), is a slightly altered basalt. A cap rock layer typically 0.5 to 2m thick blankets much of the rock surface. The cap rock consists of more altered and fractured rock. The rock has a Geologic strength index (GSI) of 45 to 65, fracture frequency of 8 to 12, and ISRM hardness value of R3 to R4. The lower values are associated with the cap rock and fault zones. Geotechnical mapping identified five geologic discontinuity sets. Descriptions of these fractures are given in Table 1. Geotechnical analysis was completed using a stereonet, see Appendix 1, the results are as follows:

- There is kinematic potential for planar failures on J1 and J2 if the rock slope is steeper than 76⁰.
- There is kinematic potential for small wedge failures on J3- JI if the rock cut slope is steeper than 78°.

Closure

We trust that this report satisfies your present requirements. Should you have any questions or comments, please do not hesitate to contact us. The opportunity to be of service to you is appreciated.

Sincerely

Michael Cullen Geotechnical Ltd.

per

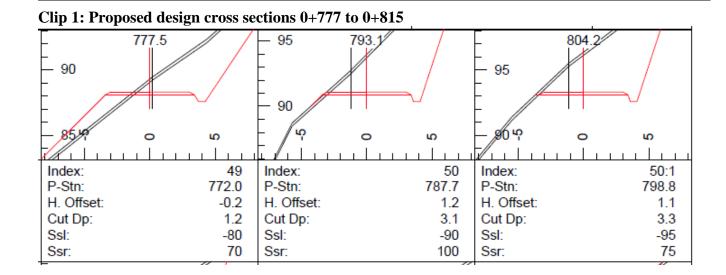

Michael Cullen, P.Eng.

Table 1: Discontinuity Orientation and Condition

Michael Willer M. CULL

Table 1: Discontinuity Orientation and Condition						
FEATURE	DIP	DIP	SPACING	CONTINUITY	SURFACE	COMMENTS
	(deg.)	DIR.	(m)	(m)	CONDITON	
		(deg.)				
Joint 1	80	010	<1.0	>10m	rough,	Parallel to bluff, controls face of bluff.
					undulating,	
					tight	
					staining only	
Joint 2	76	045	<1.0	>10m	rough,	Sub-parallel to bluff, controls face of
					sl. undulating,	bluff with J1.
					tight	
					staining only	
Joint 3	80	095	<1.0	>10	Sl. rough,	Perpendicular to bluff. Creates release
					sl. planar	surfaces for slabs on J1 and J2.
						Occasionally faulted with zones to 1m.
						Contributing factor to rock slide
Joint 4	60	210	<1.0	<5	rough,	Dips into slope.
					planar	May result in minor overhangs
					tight	
					staining only	
Joint 5	20	055	2	<10	rough,	Dips out of slope.
					Sl. planar	Sliding not expected due to shallow
					tight	angle
					staining only	
	40	040		<10		observed at headscarp of slide not at
						road

Dip angles are typically +/- 5 degrees. Dip direction is typically +/- 10 degrees.

Figure 1: Recommended Construction

Yellow shade is estimated rock slide material, and orange shade is pre-slide talus deposit

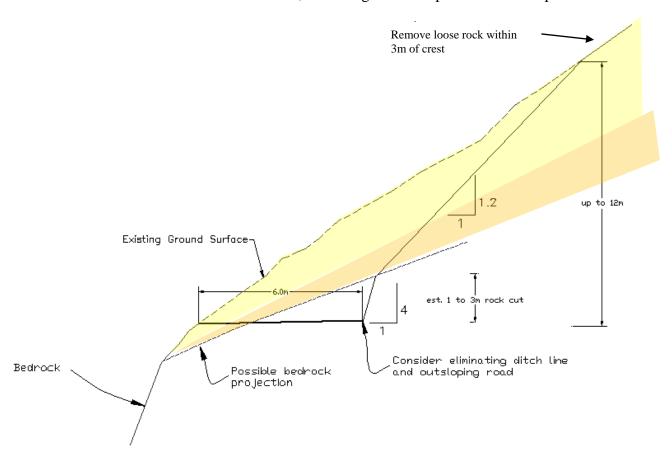
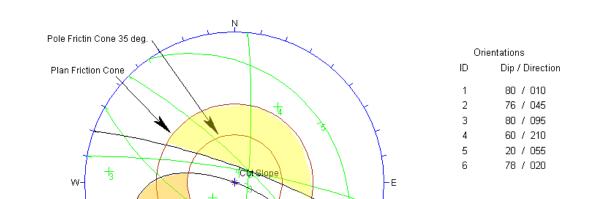


Photo 1: Recent Rock Fall Boulder on surface of older slide

Photo 2: Detached Blocks at Headscarp of Slide Near FC 50-5 (flag)

Limitations

Michael Cullen Geotechnical Ltd (MCG) prepared this report for the use of AVCF (the Client). This report applies only to the subject road section. MCG does not accept liability for any damages suffered where a third party uses this report, or where it is used for purposes other than intended.


This written report is of a summary nature and is not intended to stand alone without reference to the instructions given to us by the Client, communications between MCG and the Client, and to any other reports, writings, proposals, related to the project, which in aggregate form the whole report. In order to properly understand the recommendations and opinions expressed herein, reference must be made to the whole of the report.

This report has been prepared in accordance with standard geotechnical engineering practices for the resource sector using the degree of skill and care normally exercised for such work within the jurisdiction of the work. No other warrantee is inferred or implied.

The conclusions and recommendations in this report are based on limited surface observations and measurements. Geological and hydrological conditions can vary significantly over a very short distance, or depth, and may also change with time. The field investigation cannot practically cover the entire project area and will only identify conditions at the point and time of observation. Identification of sub surface conditions is judgemental in nature and even comprehensive sampling and testing programs may fail to locate some conditions. All investigations involve an inherent risk that some conditions will not be detected and that actual conditions may vary significantly between the points investigated; all persons making use of this report must be aware of, and accept, this risk. Any variation in the conditions presented in this report which are discovered at a later time should be brought to the attention of MCG in order to evaluate the impact on the conclusions and recommendations presented in this report.

The conclusions and recommendations in this report are based on information made available at the time the report was prepared. We have relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, we cannot accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, errors, omissions, or misrepresentations, of persons providing information. Any changes to information used by us for completion of this report should be brought to the attention of MCG in order to evaluate the impact of the changes on the conclusions and recommendations presented in this report.

The information, interpretations and conclusions in the Report are based on our interpretation of conditions revealed through limited assessment conducted within a defined scope of services. MCG does not accept liability for independent conclusions, interpretations, interpolations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report.

Appendix 1 Stereonets showing discontinuities and stability analysis

Equal Angle Lower Hemisphere O Poles O Entries

Appendix 2: Qualitative Definitions of Likelihood

Daylight Envelope

<u>Likelihood</u> is a qualitative description of the probability or frequency of a hazardous event occurring.

Likelihood of an event over project life of 5 years

Likelihood (probability) of a Hazardous event	Approximate Annual Probability of an event (%)	Approximate Probability of an event in 5 years (%)
Very Low An event is essentially inconceivable.	Less than 0.004 (less than 1:2500)	Less than 0.2
Low An event is not expected	0.04 to 0.2 (1:2500 to 1:500)	0.2 to 1.0
Moderate An event is not expected under normal conditions but may occur under adverse conditions.	0.2 to 1 (1:500 to 1:100)	1.0 to 4.9
High An event will probably occur.	1 to 5 (1:100 to 1:20)	4.9 to 22
Very High Event(s) are expected to occur.	Greater than 5 (greater than 1:20)	Greater than 22

modified from "Landslide Risk Case Studies in Forest Development and Planning" Wise, Moore, VanDine 2004, BC Ministry of Forests Land Management Handbook 56